|
|
|
###############################################################################
|
|
|
|
#
|
|
|
|
# Copyright (c) 2017 Estimation and Control Library (ECL). All rights reserved.
|
|
|
|
#
|
|
|
|
# Redistribution and use in source and binary forms, with or without
|
|
|
|
# modification, are permitted provided that the following conditions
|
|
|
|
# are met:
|
|
|
|
#
|
|
|
|
# 1. Redistributions of source code must retain the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer.
|
|
|
|
# 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer in
|
|
|
|
# the documentation and/or other materials provided with the
|
|
|
|
# distribution.
|
|
|
|
# 3. Neither the name ECL nor the names of its contributors may be
|
|
|
|
# used to endorse or promote products derived from this software
|
|
|
|
# without specific prior written permission.
|
|
|
|
#
|
|
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
# POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#
|
|
|
|
###############################################################################
|
|
|
|
|
|
|
|
"""Test the sensor data sampling of the ecl's EKF
|
|
|
|
|
|
|
|
@author: Peter Dürr <Peter.Duerr@sony.com>
|
|
|
|
"""
|
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import absolute_import
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
from hypothesis import given
|
|
|
|
from hypothesis import strategies as st
|
|
|
|
|
|
|
|
from test_utils import ecl_EKF
|
|
|
|
from test_utils import float_array
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("dt_usec, downsampling_factor", [
|
|
|
|
(ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000 // 3, 3),
|
|
|
|
(ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000 // 2, 2),
|
|
|
|
(ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000, 1),
|
|
|
|
])
|
|
|
|
@given(accel_x=st.floats(-5, 5),
|
|
|
|
accel_y=st.floats(-5, 5),
|
|
|
|
accel_z=st.floats(-5, 5))
|
|
|
|
def test_imu_input(dt_usec, downsampling_factor, accel_x, accel_y, accel_z):
|
|
|
|
"""Make sure the acceleration is updated correctly when there is no angular
|
|
|
|
velocity (test with and without downsampling)
|
|
|
|
|
|
|
|
Tests random accelerations in x, y, z directions (using the hypothesis
|
|
|
|
decorator) with different update frequencies (using pytest's parametrize
|
|
|
|
decorator)
|
|
|
|
|
|
|
|
"""
|
|
|
|
time_usec = 100
|
|
|
|
delta_ang = float_array([0, 0, 0])
|
|
|
|
delta_vel = float_array([accel_x,
|
|
|
|
accel_y,
|
|
|
|
accel_z]) * dt_usec / 1e6
|
|
|
|
|
|
|
|
ekf = ecl_EKF.Ekf()
|
|
|
|
# Run to accumulate buffer (choose sample after downsampling)
|
|
|
|
for _ in range(20 * downsampling_factor):
|
|
|
|
time_usec += dt_usec
|
|
|
|
ekf.set_imu_data(time_usec,
|
|
|
|
dt_usec,
|
|
|
|
dt_usec,
|
|
|
|
delta_ang,
|
|
|
|
delta_vel)
|
|
|
|
|
|
|
|
imu_sample = ekf.get_imu_sample_delayed()
|
|
|
|
assert imu_sample.delta_ang_x == pytest.approx(0.0, abs=1e-3)
|
|
|
|
assert imu_sample.delta_ang_y == pytest.approx(0.0, abs=1e-3)
|
|
|
|
assert imu_sample.delta_ang_z == pytest.approx(0.0, abs=1e-3)
|
|
|
|
assert imu_sample.delta_vel_x == pytest.approx(
|
|
|
|
accel_x * dt_usec * downsampling_factor / 1e6, abs=1e-3)
|
|
|
|
assert imu_sample.delta_vel_y == pytest.approx(
|
|
|
|
accel_y * dt_usec * downsampling_factor / 1e6, abs=1e-3)
|
|
|
|
assert imu_sample.delta_vel_z == pytest.approx(
|
|
|
|
accel_z * dt_usec * downsampling_factor / 1e6, abs=1e-3)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("dt_usec, expected_dt_usec", [
|
|
|
|
(ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000 // 3,
|
|
|
|
ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000),
|
|
|
|
(ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000 // 2,
|
|
|
|
ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000),
|
|
|
|
(ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000,
|
|
|
|
ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000),
|
|
|
|
(ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000 * 2,
|
|
|
|
ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000 * 2),
|
|
|
|
(500 * 1000,
|
|
|
|
500 * 1000)
|
|
|
|
])
|
|
|
|
def test_imu_sampling(dt_usec, expected_dt_usec):
|
|
|
|
"""Make sure the timing is updated correctly
|
|
|
|
|
|
|
|
If the imu update is faster than the filter period, it should be
|
|
|
|
downsampled, otherwise used as is.
|
|
|
|
|
|
|
|
"""
|
|
|
|
time_usec = 0
|
|
|
|
delta_ang = float_array([0, 0, 0])
|
|
|
|
delta_vel = float_array([0, 0, 0])
|
|
|
|
ekf = ecl_EKF.Ekf()
|
|
|
|
for _ in range(100):
|
|
|
|
time_usec += dt_usec
|
|
|
|
ekf.set_imu_data(time_usec,
|
|
|
|
dt_usec,
|
|
|
|
dt_usec,
|
|
|
|
delta_ang,
|
|
|
|
delta_vel)
|
|
|
|
|
|
|
|
imu_sample = ekf.get_imu_sample_delayed()
|
|
|
|
assert imu_sample.delta_ang_dt == pytest.approx(
|
|
|
|
expected_dt_usec / 1e6, abs=1e-5)
|
|
|
|
assert imu_sample.delta_vel_dt == pytest.approx(
|
|
|
|
expected_dt_usec / 1e6, abs=1e-5)
|
|
|
|
# Make sure the timestamp of the last sample is a small positive multiple
|
|
|
|
# of the period away from now
|
|
|
|
assert (time_usec - imu_sample.time_us) >= 0
|
|
|
|
assert (time_usec - imu_sample.time_us) / expected_dt_usec < 20
|