You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

220 lines
7.4 KiB

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file vel_pos_fusion.cpp
* Function for fusing gps and baro measurements/
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Siddharth Bharat Purohit <siddharthbharatpurohit@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
/**
* Update the EKF state with velocity and position measurements sequentially. [(vx vy) (vz) (x y) (z)]
*
* @param innov Input [vx vy vz x y z]
* @param innov_gate Input [vxy vz xy z]
* @param obs_var Input [vx vy vz x y z]
* @param fuse_mask Input/Output [vxy vz xy z]
* Specify which innovation components should be fused,
* components that do not pass innovations checks will be set to zero
* @param innov_var Ouput [vx vy vz x y z]
* @param test_ratio Output [vxy vz xy z]
*/
void Ekf::fuseVelPosHeightSeq(const float (&innov)[6], const float (&innov_gate)[4],
const float (obs_var)[6], bool (&fuse_mask)[4],
float (&innov_var)[6], float (&test_ratio)[4])
{
// check position, velocity and height innovations sequentially and if checks are passed fuse it
// treat 2D horizintal velocity, vertical velocity, 2D horizontal position and vertical height as separate sensors
// At the moment we still fuse velocity as 3D measurement, but this should be split in the future
// horizontal and vertical velocity
if(fuse_mask[HVEL] && fuse_mask[VVEL]){
innov_var[0] = P[4][4] + obs_var[0];
innov_var[1] = P[5][5] + obs_var[1];
test_ratio[HVEL] = fmaxf( sq(innov[0]) / (sq(innov_gate[HVEL]) * innov_var[0]),
sq(innov[1]) / (sq(innov_gate[HVEL]) * innov_var[1]));
innov_var[2] = P[6][6] + obs_var[2];
test_ratio[VVEL] = sq(innov[2]) / (sq(innov_gate[VVEL]) * innov_var[2]);
bool innov_check_pass = (test_ratio[HVEL] <= 1.0f) && (test_ratio[VVEL] <= 1.0f);
if (innov_check_pass) {
_time_last_vel_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_vel_NED = false;
// fuse the horizontal and vertical velocity measurements
fuseVelPosHeight(innov[0],innov_var[0],0);
fuseVelPosHeight(innov[1],innov_var[1],1);
fuseVelPosHeight(innov[2],innov_var[2],2);
}else{
fuse_mask[HVEL] = fuse_mask[VVEL] = false;
_innov_check_fail_status.flags.reject_vel_NED = true;
}
}
// horizontal position
if(fuse_mask[HPOS]){
innov_var[3] = P[7][7] + obs_var[3];
innov_var[4] = P[8][8] + obs_var[4];
test_ratio[HPOS] = fmaxf( sq(innov[3]) / (sq(innov_gate[HPOS]) * innov_var[3]),
sq(innov[4]) / (sq(innov_gate[HPOS]) * innov_var[4]));
bool innov_check_pass = (test_ratio[HPOS] <= 1.0f) || !_control_status.flags.tilt_align;
if (innov_check_pass) {
if (!_fuse_hpos_as_odom) {
_time_last_pos_fuse = _time_last_imu;
} else {
_time_last_delpos_fuse = _time_last_imu;
}
_innov_check_fail_status.flags.reject_pos_NE = false;
// fuse the horizontal position measurements
fuseVelPosHeight(innov[3],innov_var[3],3);
fuseVelPosHeight(innov[4],innov_var[4],4);
}else{
fuse_mask[HPOS] = false;
_innov_check_fail_status.flags.reject_pos_NE = true;
}
}
// vertical position
if(fuse_mask[VPOS]){
innov_var[5] = P[9][9] + obs_var[5];
test_ratio[VPOS] = sq(innov[5]) / (sq(innov_gate[VPOS]) * innov_var[5]);
bool innov_check_pass = (test_ratio[VPOS] <= 1.0f) || !_control_status.flags.tilt_align;
if (innov_check_pass) {
_time_last_hgt_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_pos_D = false;
// fuse the horizontal position measurements
fuseVelPosHeight(innov[5],innov_var[5],5);
}else{
fuse_mask[VPOS] = false;
_innov_check_fail_status.flags.reject_pos_D = true;
}
}
}
// Helper function that fuses a single velocity or position measurement
void Ekf::fuseVelPosHeight(const float innov, const float innov_var, const int obs_index)
{
float Kfusion[24] = {}; // Kalman gain vector for any single observation - sequential fusion is used.
unsigned state_index = obs_index + 4; // we start with vx and this is the 4. state
// calculate kalman gain K = PHS, where S = 1/innovation variance
for (int row = 0; row < _k_num_states; row++) {
Kfusion[row] = P[row][state_index] / innov_var;
}
float KHP[_k_num_states][_k_num_states];
for (unsigned row = 0; row < _k_num_states; row++) {
for (unsigned column = 0; column < _k_num_states; column++) {
KHP[row][column] = Kfusion[row] * P[state_index][column];
}
}
// if the covariance correction will result in a negative variance, then
// the covariance matrix is unhealthy and must be corrected
bool healthy = true;
for (int i = 0; i < _k_num_states; i++) {
if (P[i][i] < KHP[i][i]) {
// zero rows and columns
zeroRows(P, i, i);
zeroCols(P, i, i);
healthy = false;
setVelPosFaultStatus(obs_index,true);
} else {
setVelPosFaultStatus(obs_index,false);
}
}
// only apply covariance and state corrections if healthy
if (healthy) {
// apply the covariance corrections
for (unsigned row = 0; row < _k_num_states; row++) {
for (unsigned column = 0; column < _k_num_states; column++) {
P[row][column] = P[row][column] - KHP[row][column];
}
}
// correct the covariance matrix for gross errors
fixCovarianceErrors();
// apply the state corrections
fuse(Kfusion, innov);
}
}
void Ekf::setVelPosFaultStatus(const int index, const bool status)
{
if (index == 0) {
_fault_status.flags.bad_vel_N = status;
} else if (index == 1) {
_fault_status.flags.bad_vel_E = status;
} else if (index == 2) {
_fault_status.flags.bad_vel_D = status;
} else if (index == 3) {
_fault_status.flags.bad_pos_N = status;
} else if (index == 4) {
_fault_status.flags.bad_pos_E = status;
} else if (index == 5) {
_fault_status.flags.bad_pos_D = status;
}
}