|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* Copyright (c) 2019 ECL Development Team. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
|
|
* used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Test the external vision functionality
|
|
|
|
* @author Kamil Ritz <ka.ritz@hotmail.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "EKF/ekf.h"
|
|
|
|
#include "sensor_simulator/sensor_simulator.h"
|
|
|
|
#include "sensor_simulator/ekf_wrapper.h"
|
|
|
|
#include "test_helper/reset_logging_checker.h"
|
|
|
|
|
|
|
|
|
|
|
|
class EkfExternalVisionTest : public ::testing::Test {
|
|
|
|
public:
|
|
|
|
|
|
|
|
EkfExternalVisionTest(): ::testing::Test(),
|
|
|
|
_ekf{std::make_shared<Ekf>()},
|
|
|
|
_sensor_simulator(_ekf),
|
|
|
|
_ekf_wrapper(_ekf) {};
|
|
|
|
|
|
|
|
std::shared_ptr<Ekf> _ekf;
|
|
|
|
SensorSimulator _sensor_simulator;
|
|
|
|
EkfWrapper _ekf_wrapper;
|
|
|
|
|
|
|
|
static constexpr float _tilt_align_time = 7.f;
|
|
|
|
|
|
|
|
// Setup the Ekf with synthetic measurements
|
|
|
|
void SetUp() override
|
|
|
|
{
|
|
|
|
_ekf->init(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use this method to clean up any memory, network etc. after each test
|
|
|
|
void TearDown() override
|
|
|
|
{
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, checkVisionFusionLogic)
|
|
|
|
{
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time); // Let the tilt align
|
|
|
|
_ekf_wrapper.enableExternalVisionPositionFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
_sensor_simulator.runSeconds(2);
|
|
|
|
|
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion());
|
|
|
|
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion());
|
|
|
|
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion());
|
|
|
|
|
|
|
|
EXPECT_TRUE(_ekf->local_position_is_valid());
|
|
|
|
EXPECT_FALSE(_ekf->global_position_is_valid());
|
|
|
|
|
|
|
|
_ekf_wrapper.enableExternalVisionVelocityFusion();
|
|
|
|
_sensor_simulator.runSeconds(2);
|
|
|
|
|
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion());
|
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion());
|
|
|
|
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion());
|
|
|
|
|
|
|
|
EXPECT_TRUE(_ekf->local_position_is_valid());
|
|
|
|
EXPECT_FALSE(_ekf->global_position_is_valid());
|
|
|
|
|
|
|
|
_ekf_wrapper.enableExternalVisionHeadingFusion();
|
|
|
|
_sensor_simulator.runSeconds(2);
|
|
|
|
|
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion());
|
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion());
|
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion());
|
|
|
|
|
|
|
|
EXPECT_TRUE(_ekf->local_position_is_valid());
|
|
|
|
EXPECT_FALSE(_ekf->global_position_is_valid());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, visionVelocityReset)
|
|
|
|
{
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time);
|
|
|
|
ResetLoggingChecker reset_logging_checker(_ekf);
|
|
|
|
reset_logging_checker.capturePreResetState();
|
|
|
|
|
|
|
|
const Vector3f simulated_velocity(0.3f, -1.0f, 0.4f);
|
|
|
|
|
|
|
|
_sensor_simulator._vio.setVelocity(simulated_velocity);
|
|
|
|
_ekf_wrapper.enableExternalVisionVelocityFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
// Note: test duration needs to allow time for tilt alignment to complete
|
|
|
|
_sensor_simulator.runMicroseconds(2e5);
|
|
|
|
|
|
|
|
// THEN: a reset to Vision velocity should be done
|
|
|
|
// Note: velocity will drift after reset due to INAV errors so the tolerance needs to allow for this
|
|
|
|
const Vector3f estimated_velocity = _ekf->getVelocity();
|
|
|
|
EXPECT_TRUE(isEqual(estimated_velocity, simulated_velocity, 0.01f));
|
|
|
|
|
|
|
|
// AND: the reset in velocity should be saved correctly
|
|
|
|
reset_logging_checker.capturePostResetState();
|
|
|
|
EXPECT_TRUE(reset_logging_checker.isHorizontalVelocityResetCounterIncreasedBy(1));
|
|
|
|
EXPECT_TRUE(reset_logging_checker.isVerticalVelocityResetCounterIncreasedBy(1));
|
|
|
|
EXPECT_TRUE(reset_logging_checker.isVelocityDeltaLoggedCorrectly(0.01f));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, visionVelocityResetWithAlignment)
|
|
|
|
{
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time);
|
|
|
|
ResetLoggingChecker reset_logging_checker(_ekf);
|
|
|
|
reset_logging_checker.capturePreResetState();
|
|
|
|
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV)
|
|
|
|
// Heading of drone in EKF frame is 0°
|
|
|
|
|
|
|
|
// WHEN: Vision frame is rotate +90°. The reported heading is -90°
|
|
|
|
Quatf vision_to_ekf(Eulerf(0.0f,0.0f,math::radians(-90.0f)));
|
|
|
|
_sensor_simulator._vio.setOrientation(vision_to_ekf.inversed());
|
|
|
|
_ekf_wrapper.enableExternalVisionAlignment();
|
|
|
|
|
|
|
|
const Vector3f simulated_velocity_in_vision_frame(0.3f, -1.0f, 0.4f);
|
|
|
|
const Vector3f simulated_velocity_in_ekf_frame =
|
|
|
|
Dcmf(vision_to_ekf) * simulated_velocity_in_vision_frame;
|
|
|
|
_sensor_simulator._vio.setVelocity(simulated_velocity_in_vision_frame);
|
|
|
|
_ekf_wrapper.enableExternalVisionVelocityFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
_sensor_simulator.runMicroseconds(2e5);
|
|
|
|
|
|
|
|
// THEN: a reset to Vision velocity should be done
|
|
|
|
const Vector3f estimated_velocity_in_ekf_frame = _ekf->getVelocity();
|
|
|
|
EXPECT_TRUE(isEqual(estimated_velocity_in_ekf_frame, simulated_velocity_in_ekf_frame, 0.01f));
|
|
|
|
// And: the frame offset should be estimated correctly
|
|
|
|
Quatf estimatedExternalVisionFrameOffset = _ekf->getVisionAlignmentQuaternion();
|
|
|
|
EXPECT_TRUE(matrix::isEqual(vision_to_ekf.canonical(),
|
|
|
|
estimatedExternalVisionFrameOffset.canonical()));
|
|
|
|
|
|
|
|
// AND: the reset in velocity should be saved correctly
|
|
|
|
reset_logging_checker.capturePostResetState();
|
|
|
|
EXPECT_TRUE(reset_logging_checker.isHorizontalVelocityResetCounterIncreasedBy(1));
|
|
|
|
EXPECT_TRUE(reset_logging_checker.isVerticalVelocityResetCounterIncreasedBy(1));
|
|
|
|
EXPECT_TRUE(reset_logging_checker.isVelocityDeltaLoggedCorrectly(0.01f));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, visionHorizontalPositionReset)
|
|
|
|
{
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time);
|
|
|
|
const Vector3f simulated_position(8.3f, -1.0f, 0.0f);
|
|
|
|
|
|
|
|
_sensor_simulator._vio.setPosition(simulated_position);
|
|
|
|
_ekf_wrapper.enableExternalVisionPositionFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
_sensor_simulator.runMicroseconds(2e5);
|
|
|
|
|
|
|
|
// THEN: a reset to Vision velocity should be done
|
|
|
|
const Vector3f estimated_position = _ekf->getPosition();
|
|
|
|
EXPECT_TRUE(isEqual(estimated_position, simulated_position, 1e-5f));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, visionHorizontalPositionResetWithAlignment)
|
|
|
|
{
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time);
|
|
|
|
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV)
|
|
|
|
// Heading of drone in EKF frame is 0°
|
|
|
|
|
|
|
|
// WHEN: Vision frame is rotate +90°. The reported heading is -90°
|
|
|
|
Quatf vision_to_ekf(Eulerf(0.0f,0.0f,math::radians(-90.0f)));
|
|
|
|
_sensor_simulator._vio.setOrientation(vision_to_ekf.inversed());
|
|
|
|
_ekf_wrapper.enableExternalVisionAlignment();
|
|
|
|
|
|
|
|
const Vector3f simulated_position_in_vision_frame(8.3f, -1.0f, 0.0f);
|
|
|
|
const Vector3f simulated_position_in_ekf_frame =
|
|
|
|
Dcmf(vision_to_ekf) * simulated_position_in_vision_frame;
|
|
|
|
_sensor_simulator._vio.setPosition(simulated_position_in_vision_frame);
|
|
|
|
_ekf_wrapper.enableExternalVisionPositionFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
_sensor_simulator.runMicroseconds(2e5);
|
|
|
|
|
|
|
|
// THEN: a reset to Vision velocity should be done
|
|
|
|
const Vector3f estimated_position_in_ekf_frame = _ekf->getPosition();
|
|
|
|
EXPECT_TRUE(isEqual(estimated_position_in_ekf_frame, simulated_position_in_ekf_frame, 1e-2f));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, visionVarianceCheck)
|
|
|
|
{
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time);
|
|
|
|
const Vector3f velVar_init = _ekf->getVelocityVariance();
|
|
|
|
EXPECT_NEAR(velVar_init(0), velVar_init(1), 0.0001);
|
|
|
|
|
|
|
|
_sensor_simulator._vio.setVelocityVariance(Vector3f{2.0f,0.01f,0.01f});
|
|
|
|
_ekf_wrapper.enableExternalVisionVelocityFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
_sensor_simulator.runSeconds(4);
|
|
|
|
|
|
|
|
const Vector3f velVar_new = _ekf->getVelocityVariance();
|
|
|
|
EXPECT_TRUE(velVar_new(0) > velVar_new(1));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, visionAlignment)
|
|
|
|
{
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time);
|
|
|
|
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV)
|
|
|
|
// Heading of drone in EKF frame is 0°
|
|
|
|
|
|
|
|
// WHEN: Vision frame is rotate +90°. The reported heading is -90°
|
|
|
|
Quatf externalVisionFrameOffset(Eulerf(0.0f,0.0f,math::radians(90.0f)));
|
|
|
|
_sensor_simulator._vio.setOrientation(externalVisionFrameOffset.inversed());
|
|
|
|
_ekf_wrapper.enableExternalVisionAlignment();
|
|
|
|
|
|
|
|
// Simulate high uncertainty on vision x axis which is in this case
|
|
|
|
// the y EKF frame axis
|
|
|
|
_sensor_simulator._vio.setVelocityVariance(Vector3f{2.0f,0.01f,0.01f});
|
|
|
|
_ekf_wrapper.enableExternalVisionVelocityFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
|
|
|
|
const Vector3f velVar_init = _ekf->getVelocityVariance();
|
|
|
|
EXPECT_NEAR(velVar_init(0), velVar_init(1), 0.0001);
|
|
|
|
|
|
|
|
_sensor_simulator.runSeconds(4);
|
|
|
|
|
|
|
|
// THEN: velocity uncertainty in y should be bigger
|
|
|
|
const Vector3f velVar_new = _ekf->getVelocityVariance();
|
|
|
|
EXPECT_TRUE(velVar_new(1) > velVar_new(0));
|
|
|
|
|
|
|
|
// THEN: the frame offset should be estimated correctly
|
|
|
|
Quatf estimatedExternalVisionFrameOffset = _ekf->getVisionAlignmentQuaternion();
|
|
|
|
EXPECT_TRUE(matrix::isEqual(externalVisionFrameOffset.canonical(),
|
|
|
|
estimatedExternalVisionFrameOffset.canonical()));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, velocityFrameBody)
|
|
|
|
{
|
|
|
|
// GIVEN: Drone is turned 90 degrees
|
|
|
|
const Quatf quat_sim(Eulerf(0.0f, 0.0f, math::radians(90.0f)));
|
|
|
|
_sensor_simulator.simulateOrientation(quat_sim);
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time);
|
|
|
|
|
|
|
|
// Without any measurement x and y velocity variance are close
|
|
|
|
const Vector3f velVar_init = _ekf->getVelocityVariance();
|
|
|
|
EXPECT_NEAR(velVar_init(0), velVar_init(1), 0.0001);
|
|
|
|
|
|
|
|
// WHEN: measurement is given in BODY-FRAME and
|
|
|
|
// x variance is bigger than y variance
|
|
|
|
_sensor_simulator._vio.setVelocityFrameToBody();
|
|
|
|
float vel_cov_data [9] = {2.0f, 0.0f, 0.0f,
|
|
|
|
0.0f, 0.01f, 0.0f,
|
|
|
|
0.0f, 0.0f, 0.01f};
|
|
|
|
const Matrix3f vel_cov_body(vel_cov_data);
|
|
|
|
const Vector3f vel_body(1.0f, 0.0f, 0.0f);
|
|
|
|
_sensor_simulator._vio.setVelocityCovariance(vel_cov_body);
|
|
|
|
_sensor_simulator._vio.setVelocity(vel_body);
|
|
|
|
_ekf_wrapper.enableExternalVisionVelocityFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
_sensor_simulator.runSeconds(4);
|
|
|
|
|
|
|
|
// THEN: As the drone is turned 90 degrees, velocity variance
|
|
|
|
// along local y axis is expected to be bigger
|
|
|
|
const Vector3f velVar_new = _ekf->getVelocityVariance();
|
|
|
|
EXPECT_NEAR(velVar_new(1) / velVar_new(0), 80.f, 10.f);
|
|
|
|
|
|
|
|
const Vector3f vel_earth_est = _ekf->getVelocity();
|
|
|
|
EXPECT_NEAR(vel_earth_est(0), 0.0f, 0.1f);
|
|
|
|
EXPECT_NEAR(vel_earth_est(1), 1.0f, 0.1f);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(EkfExternalVisionTest, velocityFrameLocal)
|
|
|
|
{
|
|
|
|
// GIVEN: Drone is turned 90 degrees
|
|
|
|
const Quatf quat_sim(Eulerf(0.0f, 0.0f, math::radians(90.0f)));
|
|
|
|
_sensor_simulator.simulateOrientation(quat_sim);
|
|
|
|
_sensor_simulator.runSeconds(_tilt_align_time);
|
|
|
|
|
|
|
|
// Without any measurement x and y velocity variance are close
|
|
|
|
const Vector3f velVar_init = _ekf->getVelocityVariance();
|
|
|
|
EXPECT_NEAR(velVar_init(0), velVar_init(1), 0.0001);
|
|
|
|
|
|
|
|
// WHEN: measurement is given in LOCAL-FRAME and
|
|
|
|
// x variance is bigger than y variance
|
|
|
|
_sensor_simulator._vio.setVelocityFrameToLocal();
|
|
|
|
float vel_cov_data [9] = {2.0f, 0.0f, 0.0f,
|
|
|
|
0.0f, 0.01f, 0.0f,
|
|
|
|
0.0f, 0.0f, 0.01f};
|
|
|
|
const Matrix3f vel_cov_earth(vel_cov_data);
|
|
|
|
const Vector3f vel_earth(1.0f, 0.0f, 0.0f);
|
|
|
|
_sensor_simulator._vio.setVelocityCovariance(vel_cov_earth);
|
|
|
|
_sensor_simulator._vio.setVelocity(vel_earth);
|
|
|
|
_ekf_wrapper.enableExternalVisionVelocityFusion();
|
|
|
|
_sensor_simulator.startExternalVision();
|
|
|
|
_sensor_simulator.runSeconds(4);
|
|
|
|
|
|
|
|
// THEN: Independently on drones heading, velocity variance
|
|
|
|
// along local x axis is expected to be bigger
|
|
|
|
const Vector3f velVar_new = _ekf->getVelocityVariance();
|
|
|
|
EXPECT_NEAR(velVar_new(0) / velVar_new(1), 80.f, 10.f);
|
|
|
|
|
|
|
|
const Vector3f vel_earth_est = _ekf->getVelocity();
|
|
|
|
EXPECT_NEAR(vel_earth_est(0), 1.0f, 0.1f);
|
|
|
|
EXPECT_NEAR(vel_earth_est(1), 0.0f, 0.1f);
|
|
|
|
}
|