|
|
|
#include <cstdio>
|
|
|
|
#include <stdexcept>
|
|
|
|
|
|
|
|
#include <matrix/math.hpp>
|
|
|
|
#include "test_macros.hpp"
|
|
|
|
|
|
|
|
using namespace matrix;
|
|
|
|
|
|
|
|
template class Quaternion<float>;
|
|
|
|
template class Euler<float>;
|
|
|
|
template class Dcm<float>;
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
double eps = 1e-6;
|
|
|
|
|
|
|
|
// check data
|
|
|
|
Eulerf euler_check(0.1f, 0.2f, 0.3f);
|
|
|
|
Quatf q_check(0.98334744f, 0.0342708f, 0.10602051f, .14357218f);
|
|
|
|
float dcm_data[] = {
|
|
|
|
0.93629336f, -0.27509585f, 0.21835066f,
|
|
|
|
0.28962948f, 0.95642509f, -0.03695701f,
|
|
|
|
-0.19866933f, 0.0978434f, 0.97517033f
|
|
|
|
};
|
|
|
|
Dcmf dcm_check(dcm_data);
|
|
|
|
|
|
|
|
// euler ctor
|
|
|
|
TEST(isEqual(euler_check, Vector3f(0.1f, 0.2f, 0.3f)));
|
|
|
|
|
|
|
|
// euler default ctor
|
|
|
|
Eulerf e;
|
|
|
|
Eulerf e_zero = zeros<float, 3, 1>();
|
|
|
|
TEST(isEqual(e, e_zero));
|
|
|
|
TEST(isEqual(e, e));
|
|
|
|
|
|
|
|
// euler vector ctor
|
|
|
|
Vector<float, 3> v;
|
|
|
|
v(0) = 0.1f;
|
|
|
|
v(1) = 0.2f;
|
|
|
|
v(2) = 0.3f;
|
|
|
|
Eulerf euler_copy(v);
|
|
|
|
TEST(isEqual(euler_copy, euler_check));
|
|
|
|
|
|
|
|
// quaternion ctor
|
|
|
|
Quatf q(1, 2, 3, 4);
|
|
|
|
TEST(fabs(q(0) - 1) < eps);
|
|
|
|
TEST(fabs(q(1) - 2) < eps);
|
|
|
|
TEST(fabs(q(2) - 3) < eps);
|
|
|
|
TEST(fabs(q(3) - 4) < eps);
|
|
|
|
|
|
|
|
// quat normalization
|
|
|
|
q.normalize();
|
|
|
|
TEST(isEqual(q, Quatf(0.18257419f, 0.36514837f,
|
|
|
|
0.54772256f, 0.73029674f)));
|
|
|
|
|
|
|
|
// quat default ctor
|
|
|
|
q = Quatf();
|
|
|
|
TEST(isEqual(q, Quatf(1, 0, 0, 0)));
|
|
|
|
|
|
|
|
// euler to quaternion
|
|
|
|
q = Quatf(euler_check);
|
|
|
|
TEST(isEqual(q, q_check));
|
|
|
|
|
|
|
|
// euler to dcm
|
|
|
|
Dcmf dcm(euler_check);
|
|
|
|
TEST(isEqual(dcm, dcm_check));
|
|
|
|
|
|
|
|
// quaternion to euler
|
|
|
|
Eulerf e1(q_check);
|
|
|
|
TEST(isEqual(e1, euler_check));
|
|
|
|
|
|
|
|
// quaternion to dcm
|
|
|
|
Dcmf dcm1(q_check);
|
|
|
|
TEST(isEqual(dcm1, dcm_check));
|
|
|
|
|
|
|
|
// dcm default ctor
|
|
|
|
Dcmf dcm2;
|
|
|
|
SquareMatrix<float, 3> I = eye<float, 3>();
|
|
|
|
TEST(isEqual(dcm2, I));
|
|
|
|
|
|
|
|
// dcm to euler
|
|
|
|
Eulerf e2(dcm_check);
|
|
|
|
TEST(isEqual(e2, euler_check));
|
|
|
|
|
|
|
|
// dcm to quaterion
|
|
|
|
Quatf q2(dcm_check);
|
|
|
|
TEST(isEqual(q2, q_check));
|
|
|
|
|
|
|
|
// constants
|
|
|
|
double deg2rad = M_PI/180.0;
|
|
|
|
double rad2deg = 180.0/M_PI;
|
|
|
|
|
|
|
|
// euler dcm round trip check
|
|
|
|
for (int roll=-90; roll<90; roll+=1) {
|
|
|
|
for (int pitch=-90; pitch<90; pitch+=1) {
|
|
|
|
for (int yaw=0; yaw<360; yaw+=1) {
|
|
|
|
// note if theta = pi/2, then roll is set to zero
|
|
|
|
if (pitch == 90 || pitch == -90) {
|
|
|
|
roll = 0;
|
|
|
|
}
|
|
|
|
printf("roll:%d pitch:%d yaw:%d\n", roll, pitch, yaw);
|
|
|
|
Euler<double> euler(deg2rad*double(roll),
|
|
|
|
deg2rad*double(pitch),
|
|
|
|
deg2rad*double(yaw));
|
|
|
|
Dcm<double> dcm_from_euler(euler);
|
|
|
|
Euler<double> euler_out(dcm_from_euler);
|
|
|
|
TEST(isEqual(rad2deg*euler, rad2deg*euler_out));
|
|
|
|
|
|
|
|
Eulerf eulerf(float(deg2rad)*float(roll),
|
|
|
|
float(deg2rad)*float(pitch),
|
|
|
|
float(deg2rad)*float(yaw));
|
|
|
|
Dcm<float> dcm_from_eulerf(eulerf);
|
|
|
|
Euler<float> euler_outf(dcm_from_eulerf);
|
|
|
|
TEST(isEqual(float(rad2deg)*eulerf,
|
|
|
|
float(rad2deg)*euler_outf));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// quaterion copy ctors
|
|
|
|
float data_v4[] = {1, 2, 3, 4};
|
|
|
|
Vector<float, 4> v4(data_v4);
|
|
|
|
Quatf q_from_v(v4);
|
|
|
|
TEST(isEqual(q_from_v, v4));
|
|
|
|
|
|
|
|
Matrix<float, 4, 1> m4(data_v4);
|
|
|
|
Quatf q_from_m(m4);
|
|
|
|
TEST(isEqual(q_from_m, m4));
|
|
|
|
|
|
|
|
// quaternion derivate
|
|
|
|
Vector<float, 4> q_dot = q.derivative(Vector3f(1, 2, 3));
|
|
|
|
|
|
|
|
// quaternion product
|
|
|
|
Quatf q_prod_check(
|
|
|
|
0.93394439f, 0.0674002f, 0.20851f, 0.28236266f);
|
|
|
|
TEST(isEqual(q_prod_check, q_check*q_check));
|
|
|
|
q_check *= q_check;
|
|
|
|
TEST(isEqual(q_prod_check, q_check));
|
|
|
|
|
|
|
|
// Quaternion scalar multiplication
|
|
|
|
float scalar = 0.5;
|
|
|
|
Quatf q_scalar_mul(1.0f, 2.0f, 3.0f, 4.0f);
|
|
|
|
Quatf q_scalar_mul_check(1.0f * scalar, 2.0f * scalar,
|
|
|
|
3.0f * scalar, 4.0f * scalar);
|
|
|
|
Quatf q_scalar_mul_res = scalar * q_scalar_mul;
|
|
|
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res));
|
|
|
|
Quatf q_scalar_mul_res2 = q_scalar_mul * scalar;
|
|
|
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res2));
|
|
|
|
Quatf q_scalar_mul_res3(q_scalar_mul);
|
|
|
|
q_scalar_mul_res3 *= scalar;
|
|
|
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res3));
|
|
|
|
|
|
|
|
// quaternion inverse
|
|
|
|
q = q_check.inversed();
|
|
|
|
TEST(fabsf(q_check(0) - q(0)) < eps);
|
|
|
|
TEST(fabsf(q_check(1) + q(1)) < eps);
|
|
|
|
TEST(fabsf(q_check(2) + q(2)) < eps);
|
|
|
|
TEST(fabsf(q_check(3) + q(3)) < eps);
|
|
|
|
|
|
|
|
q = q_check;
|
|
|
|
q.invert();
|
|
|
|
TEST(fabsf(q_check(0) - q(0)) < eps);
|
|
|
|
TEST(fabsf(q_check(1) + q(1)) < eps);
|
|
|
|
TEST(fabsf(q_check(2) + q(2)) < eps);
|
|
|
|
TEST(fabsf(q_check(3) + q(3)) < eps);
|
|
|
|
|
|
|
|
// rotate quaternion (nonzero rotation)
|
|
|
|
Quatf qI(1.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
Vector<float, 3> rot;
|
|
|
|
rot(0) = 1.0f;
|
|
|
|
rot(1) = rot(2) = 0.0f;
|
|
|
|
qI.rotate(rot);
|
|
|
|
Quatf q_true(cosf(1.0f / 2), sinf(1.0f / 2), 0.0f, 0.0f);
|
|
|
|
TEST(fabsf(qI(0) - q_true(0)) < eps);
|
|
|
|
TEST(fabsf(qI(1) - q_true(1)) < eps);
|
|
|
|
TEST(fabsf(qI(2) - q_true(2)) < eps);
|
|
|
|
TEST(fabsf(qI(3) - q_true(3)) < eps);
|
|
|
|
|
|
|
|
// rotate quaternion (zero rotation)
|
|
|
|
qI = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
rot(0) = 0.0f;
|
|
|
|
rot(1) = rot(2) = 0.0f;
|
|
|
|
qI.rotate(rot);
|
|
|
|
q_true = Quatf(cosf(0.0f), sinf(0.0f), 0.0f, 0.0f);
|
|
|
|
TEST(fabsf(qI(0) - q_true(0)) < eps);
|
|
|
|
TEST(fabsf(qI(1) - q_true(1)) < eps);
|
|
|
|
TEST(fabsf(qI(2) - q_true(2)) < eps);
|
|
|
|
TEST(fabsf(qI(3) - q_true(3)) < eps);
|
|
|
|
|
|
|
|
// get rotation axis from quaternion (nonzero rotation)
|
|
|
|
q = Quatf(cosf(1.0f / 2), 0.0f, sinf(1.0f / 2), 0.0f);
|
|
|
|
rot = q.to_axis_angle();
|
|
|
|
TEST(fabsf(rot(0)) < eps);
|
|
|
|
TEST(fabsf(rot(1) -1.0f) < eps);
|
|
|
|
TEST(fabsf(rot(2)) < eps);
|
|
|
|
|
|
|
|
// get rotation axis from quaternion (zero rotation)
|
|
|
|
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
rot = q.to_axis_angle();
|
|
|
|
TEST(fabsf(rot(0)) < eps);
|
|
|
|
TEST(fabsf(rot(1)) < eps);
|
|
|
|
TEST(fabsf(rot(2)) < eps);
|
|
|
|
|
|
|
|
// from axis angle (zero rotation)
|
|
|
|
rot(0) = rot(1) = rot(2) = 0.0f;
|
|
|
|
q.from_axis_angle(rot, 0.0f);
|
|
|
|
q_true = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
TEST(fabsf(q(0) - q_true(0)) < eps);
|
|
|
|
TEST(fabsf(q(1) - q_true(1)) < eps);
|
|
|
|
TEST(fabsf(q(2) - q_true(2)) < eps);
|
|
|
|
TEST(fabsf(q(3) - q_true(3)) < eps);
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */
|