4 changed files with 189 additions and 6 deletions
@ -0,0 +1,186 @@
@@ -0,0 +1,186 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name ECL nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* @file airspeed_fusion.cpp |
||||
* airspeed fusion methods. |
||||
* |
||||
* @author Carl Olsson <carlolsson.co@gmail.com> |
||||
* @author Roman Bast <bapstroman@gmail.com> |
||||
* @author Paul Riseborough <p_riseborough@live.com.au> |
||||
* |
||||
*/ |
||||
#include "ekf.h" |
||||
#include "mathlib.h" |
||||
|
||||
void Ekf::fuseAirspeed() |
||||
{ |
||||
// Initialize variables
|
||||
float vn; // Velocity in north direction
|
||||
float ve; // Velocity in east direction
|
||||
float vd; // Velocity in downwards direction
|
||||
float vwn; // Wind speed in north direction
|
||||
float vwe; // Wind speed in east direction
|
||||
float v_tas_pred; // Predicted measurement
|
||||
float EAS2TAS = 1.0f; // Where can I get this from?
|
||||
float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) * math::constrain(EAS2TAS, 0.9f, 10.0f)); // Variance for true airspeed measurement - (m/sec)^2
|
||||
float SH_TAS[3] = {}; // Varialbe used to optimise calculations of measurement jacobian
|
||||
float H_TAS[24] = {}; // Observation Jacobian
|
||||
float SK_TAS[2] = {}; // Varialbe used to optimise calculations of the Kalman gain vector
|
||||
float Kfusion[24] = {}; // Kalman gain vector
|
||||
|
||||
// Copy required states to local variable names
|
||||
vn = _state.vel(0); |
||||
ve = _state.vel(1); |
||||
vd = _state.vel(2); |
||||
vwn = _state.wind_vel(0); |
||||
vwe = _state.wind_vel(1); |
||||
|
||||
// Calculate the predicted airspeed
|
||||
v_tas_pred = sqrtf((ve - vwe) * (ve - vwe) + (vn - vwn) * (vn - vwn) + vd * vd); |
||||
|
||||
// Perform fusion of True Airspeed measurement
|
||||
if (v_tas_pred > 3.0f) { |
||||
// Calculate the observation jacobian
|
||||
// intermediate variable from algebraic optimisation
|
||||
SH_TAS[0] = 1 / (sqrt(sq(ve - vwe) + sq(vn - vwn) + sq(vd))); |
||||
SH_TAS[1] = (SH_TAS[0] * (2 * ve - 2 * vwe)) / 2.0f; |
||||
SH_TAS[2] = (SH_TAS[0] * (2 * vn - 2 * vwn)) / 2.0f; |
||||
|
||||
for (uint8_t i = 0; i < _k_num_states; i++) { H_TAS[i] = 0.0f; } |
||||
|
||||
H_TAS[3] = SH_TAS[2]; |
||||
H_TAS[4] = SH_TAS[1]; |
||||
H_TAS[5] = vd * SH_TAS[0]; |
||||
H_TAS[22] = -SH_TAS[2]; |
||||
H_TAS[23] = -SH_TAS[1]; |
||||
|
||||
// We don't want to update the innovation variance if the calculation is ill conditioned
|
||||
float _airspeed_innov_var_temp = (R_TAS + SH_TAS[2] * (P[3][3] * SH_TAS[2] + P[4][3] * SH_TAS[1] - P[22][3] * SH_TAS[2] - P[23][3] * SH_TAS[1] + P[5][3] * vd *SH_TAS[0]) + SH_TAS[1] * (P[3][4] * SH_TAS[2] + P[4][4] * SH_TAS[1] - P[22][4] * SH_TAS[2] - P[23][4] * SH_TAS[1] + P[5][4] * vd *SH_TAS[0]) - SH_TAS[2] * (P[3][22] * SH_TAS[2] + P[4][22] * SH_TAS[1] - P[22][22] * SH_TAS[2] - P[23][22] * SH_TAS[1] + P[5][22] * vd *SH_TAS[0]) - SH_TAS[1] * (P[3][23] * SH_TAS[2] + P[4][23] * SH_TAS[1] - P[22][23] * SH_TAS[2] - P[23][23] * SH_TAS[1] + P[5][23] * vd *SH_TAS[0]) + vd *SH_TAS[0] * (P[3][5] * SH_TAS[2] + P[4][5] * SH_TAS[1] - P[22][5] * SH_TAS[2] - P[23][5] * SH_TAS[1] + P[5][5] * vd *SH_TAS[0])); |
||||
if (_airspeed_innov_var_temp >= R_TAS) { // Check for badly conditioned calculation
|
||||
SK_TAS[0] = 1.0f / _airspeed_innov_var_temp; |
||||
} else { // Reset the estimator
|
||||
initialiseCovariance(); |
||||
return; |
||||
} |
||||
SK_TAS[1] = SH_TAS[1]; |
||||
|
||||
Kfusion[0] = SK_TAS[0]*(P[0][3]*SH_TAS[2] - P[0][22]*SH_TAS[2] + P[0][4]*SK_TAS[1] - P[0][23]*SK_TAS[1] + P[0][5]*vd*SH_TAS[0]); |
||||
Kfusion[1] = SK_TAS[0]*(P[1][3]*SH_TAS[2] - P[1][22]*SH_TAS[2] + P[1][4]*SK_TAS[1] - P[1][23]*SK_TAS[1] + P[1][5]*vd*SH_TAS[0]); |
||||
Kfusion[2] = SK_TAS[0]*(P[2][3]*SH_TAS[2] - P[2][22]*SH_TAS[2] + P[2][4]*SK_TAS[1] - P[2][23]*SK_TAS[1] + P[2][5]*vd*SH_TAS[0]); |
||||
Kfusion[3] = SK_TAS[0]*(P[3][3]*SH_TAS[2] - P[3][22]*SH_TAS[2] + P[3][4]*SK_TAS[1] - P[3][23]*SK_TAS[1] + P[3][5]*vd*SH_TAS[0]); |
||||
Kfusion[4] = SK_TAS[0]*(P[4][3]*SH_TAS[2] - P[4][22]*SH_TAS[2] + P[4][4]*SK_TAS[1] - P[4][23]*SK_TAS[1] + P[4][5]*vd*SH_TAS[0]); |
||||
Kfusion[5] = SK_TAS[0]*(P[5][3]*SH_TAS[2] - P[5][22]*SH_TAS[2] + P[5][4]*SK_TAS[1] - P[5][23]*SK_TAS[1] + P[5][5]*vd*SH_TAS[0]); |
||||
Kfusion[6] = SK_TAS[0]*(P[6][3]*SH_TAS[2] - P[6][22]*SH_TAS[2] + P[6][4]*SK_TAS[1] - P[6][23]*SK_TAS[1] + P[6][5]*vd*SH_TAS[0]); |
||||
Kfusion[7] = SK_TAS[0]*(P[7][3]*SH_TAS[2] - P[7][22]*SH_TAS[2] + P[7][4]*SK_TAS[1] - P[7][23]*SK_TAS[1] + P[7][5]*vd*SH_TAS[0]); |
||||
Kfusion[8] = SK_TAS[0]*(P[8][3]*SH_TAS[2] - P[8][22]*SH_TAS[2] + P[8][4]*SK_TAS[1] - P[8][23]*SK_TAS[1] + P[8][5]*vd*SH_TAS[0]); |
||||
Kfusion[9] = SK_TAS[0]*(P[9][3]*SH_TAS[2] - P[9][22]*SH_TAS[2] + P[9][4]*SK_TAS[1] - P[9][23]*SK_TAS[1] + P[9][5]*vd*SH_TAS[0]); |
||||
Kfusion[10] = SK_TAS[0]*(P[10][3]*SH_TAS[2] - P[10][22]*SH_TAS[2] + P[10][4]*SK_TAS[1] - P[10][23]*SK_TAS[1] + P[10][5]*vd*SH_TAS[0]); |
||||
Kfusion[11] = SK_TAS[0]*(P[11][3]*SH_TAS[2] - P[11][22]*SH_TAS[2] + P[11][4]*SK_TAS[1] - P[11][23]*SK_TAS[1] + P[11][5]*vd*SH_TAS[0]); |
||||
Kfusion[12] = SK_TAS[0]*(P[12][3]*SH_TAS[2] - P[12][22]*SH_TAS[2] + P[12][4]*SK_TAS[1] - P[12][23]*SK_TAS[1] + P[12][5]*vd*SH_TAS[0]); |
||||
Kfusion[13] = SK_TAS[0]*(P[13][3]*SH_TAS[2] - P[13][22]*SH_TAS[2] + P[13][4]*SK_TAS[1] - P[13][23]*SK_TAS[1] + P[13][5]*vd*SH_TAS[0]); |
||||
Kfusion[14] = SK_TAS[0]*(P[14][3]*SH_TAS[2] - P[14][22]*SH_TAS[2] + P[14][4]*SK_TAS[1] - P[14][23]*SK_TAS[1] + P[14][5]*vd*SH_TAS[0]); |
||||
Kfusion[15] = SK_TAS[0]*(P[15][3]*SH_TAS[2] - P[15][22]*SH_TAS[2] + P[15][4]*SK_TAS[1] - P[15][23]*SK_TAS[1] + P[15][5]*vd*SH_TAS[0]); |
||||
Kfusion[22] = SK_TAS[0]*(P[22][3]*SH_TAS[2] - P[22][22]*SH_TAS[2] + P[22][4]*SK_TAS[1] - P[22][23]*SK_TAS[1] + P[22][5]*vd*SH_TAS[0]); |
||||
Kfusion[23] = SK_TAS[0]*(P[23][3]*SH_TAS[2] - P[23][22]*SH_TAS[2] + P[23][4]*SK_TAS[1] - P[23][23]*SK_TAS[1] + P[23][5]*vd*SH_TAS[0]); |
||||
|
||||
// Only update the magnetometer states if we are airborne and using 3D mag fusion
|
||||
if(_control_status.flags.mag_3D && _control_status.flags.in_air){ |
||||
Kfusion[16] = SK_TAS[0]*(P[16][3]*SH_TAS[2] - P[16][22]*SH_TAS[2] + P[16][4]*SK_TAS[1] - P[16][23]*SK_TAS[1] + P[16][5]*vd*SH_TAS[0]); |
||||
Kfusion[17] = SK_TAS[0]*(P[17][3]*SH_TAS[2] - P[17][22]*SH_TAS[2] + P[17][4]*SK_TAS[1] - P[17][23]*SK_TAS[1] + P[17][5]*vd*SH_TAS[0]); |
||||
Kfusion[18] = SK_TAS[0]*(P[18][3]*SH_TAS[2] - P[18][22]*SH_TAS[2] + P[18][4]*SK_TAS[1] - P[18][23]*SK_TAS[1] + P[18][5]*vd*SH_TAS[0]); |
||||
Kfusion[19] = SK_TAS[0]*(P[19][3]*SH_TAS[2] - P[19][22]*SH_TAS[2] + P[19][4]*SK_TAS[1] - P[19][23]*SK_TAS[1] + P[19][5]*vd*SH_TAS[0]); |
||||
Kfusion[20] = SK_TAS[0]*(P[20][3]*SH_TAS[2] - P[20][22]*SH_TAS[2] + P[20][4]*SK_TAS[1] - P[20][23]*SK_TAS[1] + P[20][5]*vd*SH_TAS[0]); |
||||
Kfusion[21] = SK_TAS[0]*(P[21][3]*SH_TAS[2] - P[21][22]*SH_TAS[2] + P[21][4]*SK_TAS[1] - P[21][23]*SK_TAS[1] + P[21][5]*vd*SH_TAS[0]); |
||||
} |
||||
else{ |
||||
for (int i = 16; i <= 21; i++) |
||||
{ |
||||
Kfusion[i] = 0.0f; |
||||
} |
||||
} |
||||
|
||||
|
||||
// calculate measurement innovation
|
||||
_airspeed_innov = v_tas_pred - _airspeed_sample_delayed.airspeed; // This is TAS, maybe we should indicate that in some way
|
||||
|
||||
// Calculate the innovation variance
|
||||
_airspeed_innov_var = 1.0f / SK_TAS[0]; |
||||
|
||||
// Compute the ratio of innovation to gate size
|
||||
_tas_test_ratio = sq(_airspeed_innov) / (sq(fmaxf(_params.tas_innov_gate, 1.0f)) * _airspeed_innov_var); |
||||
|
||||
if (_tas_test_ratio < 1.0f) |
||||
{ |
||||
// by definition the angle error state is zero at the fusion time
|
||||
_state.ang_error.setZero(); |
||||
|
||||
// Fuse airspeed measurement
|
||||
fuse(Kfusion, _airspeed_innov); //Why calculate angle error when it is always zero?
|
||||
|
||||
// correct the nominal quaternion
|
||||
Quaternion dq; |
||||
dq.from_axis_angle(_state.ang_error); |
||||
_state.quat_nominal = dq * _state.quat_nominal; |
||||
_state.quat_nominal.normalize(); |
||||
|
||||
// update covariance matrix via Pnew = (I - KH)P = P - KHP
|
||||
float KH[_k_num_states][_k_num_states] = {}; |
||||
float KHP[_k_num_states][_k_num_states] = {}; |
||||
|
||||
for (unsigned row = 0; row < _k_num_states; row++) { |
||||
for (unsigned column = 0; column < _k_num_states; column++) { // Here it will be a lot of zeros, should optimize that...
|
||||
KH[row][column] = Kfusion[row] * H_TAS[column]; |
||||
} |
||||
} |
||||
|
||||
for (unsigned row = 0; row < _k_num_states; row++) { |
||||
for (unsigned column = 0; column < _k_num_states; column++) { |
||||
for (unsigned i = 0; i < _k_num_states; i++) { // Check if this is correct matrix multiplication!
|
||||
KHP[row][column] += KH[row][i] * P[i][column]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
for (unsigned row = 0; row < _k_num_states; row++) { |
||||
for (unsigned column = 0; column < _k_num_states; column++) { |
||||
P[row][column] = P[row][column] - KHP[row][column]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
makeSymmetrical();
|
||||
limitCov(); |
||||
} |
||||
// Do we want to force and limit the covariance matrx even if v_tas_pred < X ?
|
||||
} |
Loading…
Reference in new issue