Browse Source

matlab: Add derivation of observation Jacobians used by the terrain estimator

master
Paul Riseborough 8 years ago
parent
commit
233c4b49c5
  1. 91
      matlab/scripts/Terrain Estimator/GenerateEquationsTerrainEstimator.m
  2. 10
      matlab/scripts/Terrain Estimator/H_OPT.c
  3. 1
      matlab/scripts/Terrain Estimator/H_RNG.c

91
matlab/scripts/Terrain Estimator/GenerateEquationsTerrainEstimator.m

@ -0,0 +1,91 @@ @@ -0,0 +1,91 @@
% IMPORTANT - This script requires the Matlab symbolic toolbox
% Derivation of EKF equations for estimation of terrain height offset
% Author: Paul Riseborough
% Last Modified: 20 June 2017
% State vector:
% terrain vertical position (ptd)
% Observations:
% line of sight (LOS) angular rate measurements (rel to sensor frame)
% from a downwards looking optical flow sensor measured in rad/sec about
% the X and Y sensor axes. These rates are motion compensated.
% A positive LOS X rate is a RH rotation of the image about the X sensor
% axis, and is produced by either a positive ground relative velocity in
% the direction of the Y axis.
% A positive LOS Y rate is a RH rotation of the image about the Y sensor
% axis, and is produced by either a negative ground relative velocity in
% the direction of the X axis.
% Range measurement aligned with the Z body axis (flat earth model assumed)
% Time varying parameters:
% quaternion parameters defining the rotation from navigation to body axes
% NED flight vehicle velocities
% vehicle vertical position
clear all;
%% define symbolic variables and constants
syms vel_x vel_y vel_z real % NED velocity : m/sec
syms R_OPT real % variance of LOS angular rate mesurements : (rad/sec)^2
syms R_RNG real % variance of range finder measurement : m^2
syms stateNoiseVar real % state process noise variance
syms pd real % position of vehicle in down axis : (m)
syms ptd real % position of terrain in down axis : (m)
syms q0 q1 q2 q3 real % quaternions defining attitude of body axes relative to local NED
syms Popt real % state variance
nStates = 1;
%% derive Jacobians for fusion of optical flow measurements
syms vel_x vel_y vel_z real % NED velocity : m/sec
syms pd real % position of vehicle in down axis : (m)
syms ptd real % position of terrain in down axis : (m)
syms q0 q1 q2 q3 real % quaternions defining attitude of body axes relative to local NED
% derive the body to nav direction cosine matrix
Tbn = Quat2Tbn([q0,q1,q2,q3]);
% calculate relative velocity in sensor frame
relVelSensor = transpose(Tbn)*[vel_x;vel_y;vel_z];
% calculate range to centre of flow sensor fov assuming flat earth
range = ((ptd - pd)/Tbn(3,3));
% divide velocity by range to get predicted motion compensated flow rates
optRateX = relVelSensor(2)/range;
optRateY = -relVelSensor(1)/range;
% calculate the observation jacobians
H_OPTX = jacobian(optRateX,ptd);
H_OPTY = jacobian(optRateY,ptd);
H_OPT = [H_OPTX;H_OPTY];
ccode(H_OPT,'file','H_OPT.c');
fix_c_code('H_OPT.c');
clear all;
reset(symengine)
%% derive Jacobian for fusion of range finder measurements
syms vel_x vel_y vel_z real % NED velocity : m/sec
syms R_RNG real % variance of range finder measurement : m^2
syms pd real % position of vehicle in down axis : (m)
syms ptd real % position of terrain in down axis : (m)
syms q0 q1 q2 q3 real % quaternions defining attitude of body axes relative to local NED
% derive the body to nav direction cosine matrix
Tbn = Quat2Tbn([q0,q1,q2,q3]);
% calculate range assuming flat earth
range = ((ptd - pd)/Tbn(3,3));
% calculate range observation Jacobian
H_RNG = jacobian(range,ptd); % measurement Jacobian
ccode(H_RNG,'file','H_RNG.c');
fix_c_code('H_RNG.c');

10
matlab/scripts/Terrain Estimator/H_OPT.c

@ -0,0 +1,10 @@ @@ -0,0 +1,10 @@
t2 = q0*q0;
t3 = q1*q1;
t4 = q2*q2;
t5 = q3*q3;
t6 = pd-ptd;
t7 = 1.0/(t6*t6);
t8 = q0*q3*2.0;
t9 = t2-t3-t4+t5;
A0[0][0] = -t7*t9*(vel_z*(q0*q1*2.0+q2*q3*2.0)+vel_y*(t2-t3+t4-t5)-vel_x*(t8-q1*q2*2.0));
A0[1][0] = t7*t9*(-vel_z*(q0*q2*2.0-q1*q3*2.0)+vel_x*(t2+t3-t4-t5)+vel_y*(t8+q1*q2*2.0));

1
matlab/scripts/Terrain Estimator/H_RNG.c

@ -0,0 +1 @@ @@ -0,0 +1 @@
A0[0][0] = 1.0/(q0*q0-q1*q1-q2*q2+q3*q3);
Loading…
Cancel
Save