|
|
@ -1,25 +1,42 @@ |
|
|
|
#include "test_macros.hpp" |
|
|
|
/****************************************************************************
|
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* Copyright (C) 2022 PX4 Development Team. All rights reserved. |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* Redistribution and use in source and binary forms, with or without |
|
|
|
|
|
|
|
* modification, are permitted provided that the following conditions |
|
|
|
|
|
|
|
* are met: |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* 1. Redistributions of source code must retain the above copyright |
|
|
|
|
|
|
|
* notice, this list of conditions and the following disclaimer. |
|
|
|
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
|
|
|
|
|
|
* notice, this list of conditions and the following disclaimer in |
|
|
|
|
|
|
|
* the documentation and/or other materials provided with the |
|
|
|
|
|
|
|
* distribution. |
|
|
|
|
|
|
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
|
|
|
|
|
|
* used to endorse or promote products derived from this software |
|
|
|
|
|
|
|
* without specific prior written permission. |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
|
|
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
|
|
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
|
|
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
|
|
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
|
|
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
|
|
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
|
|
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
|
|
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
|
|
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
|
|
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
|
|
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
****************************************************************************/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <matrix/math.hpp> |
|
|
|
#include <matrix/math.hpp> |
|
|
|
#include <iostream> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using namespace matrix; |
|
|
|
using namespace matrix; |
|
|
|
|
|
|
|
|
|
|
|
// manually instantiated all files we intend to test
|
|
|
|
TEST(MatrixAttitudeTest, Attitude) |
|
|
|
// so that coverage works correctly
|
|
|
|
|
|
|
|
// doesn't matter what test this is in
|
|
|
|
|
|
|
|
namespace matrix |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
template class Matrix<float, 3, 3>; |
|
|
|
|
|
|
|
template class Vector3<float>; |
|
|
|
|
|
|
|
template class Vector2<float>; |
|
|
|
|
|
|
|
template class Vector<float, 4>; |
|
|
|
|
|
|
|
template class Quaternion<float>; |
|
|
|
|
|
|
|
template class AxisAngle<float>; |
|
|
|
|
|
|
|
template class Scalar<float>; |
|
|
|
|
|
|
|
template class SquareMatrix<float, 4>; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int main() |
|
|
|
|
|
|
|
{ |
|
|
|
{ |
|
|
|
// check data
|
|
|
|
// check data
|
|
|
|
Eulerf euler_check(0.1f, 0.2f, 0.3f); |
|
|
|
Eulerf euler_check(0.1f, 0.2f, 0.3f); |
|
|
@ -32,70 +49,68 @@ int main() |
|
|
|
Dcmf dcm_check(dcm_data); |
|
|
|
Dcmf dcm_check(dcm_data); |
|
|
|
|
|
|
|
|
|
|
|
// euler ctor
|
|
|
|
// euler ctor
|
|
|
|
TEST(isEqual(euler_check, Vector3f(0.1f, 0.2f, 0.3f))); |
|
|
|
EXPECT_EQ(euler_check, Vector3f(0.1f, 0.2f, 0.3f)); |
|
|
|
|
|
|
|
|
|
|
|
// euler default ctor
|
|
|
|
// euler default ctor
|
|
|
|
Eulerf e; |
|
|
|
Eulerf e; |
|
|
|
Eulerf e_zero = zeros<float, 3, 1>(); |
|
|
|
Eulerf e_zero = zeros<float, 3, 1>(); |
|
|
|
TEST(isEqual(e, e_zero)); |
|
|
|
EXPECT_EQ(e, e_zero); |
|
|
|
TEST(isEqual(e, e)); |
|
|
|
EXPECT_EQ(e, e); |
|
|
|
|
|
|
|
|
|
|
|
// euler vector ctor
|
|
|
|
// euler vector ctor
|
|
|
|
Vector3f v(0.1f, 0.2f, 0.3f); |
|
|
|
Vector3f v(0.1f, 0.2f, 0.3f); |
|
|
|
Eulerf euler_copy(v); |
|
|
|
Eulerf euler_copy(v); |
|
|
|
TEST(isEqual(euler_copy, euler_check)); |
|
|
|
EXPECT_EQ(euler_copy, euler_check); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion ctor
|
|
|
|
// quaternion ctor
|
|
|
|
Quatf q0(1, 2, 3, 4); |
|
|
|
Quatf q0(1, 2, 3, 4); |
|
|
|
Quatf q(q0); |
|
|
|
Quatf q(q0); |
|
|
|
double eps = 1e-6; |
|
|
|
EXPECT_FLOAT_EQ(q(0), 1); |
|
|
|
TEST(fabs(q(0) - 1) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q(1), 2); |
|
|
|
TEST(fabs(q(1) - 2) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q(2), 3); |
|
|
|
TEST(fabs(q(2) - 3) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q(3), 4); |
|
|
|
TEST(fabs(q(3) - 4) < eps); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// quaternion ctor: vector to vector
|
|
|
|
// quaternion ctor: vector to vector
|
|
|
|
// identity test
|
|
|
|
// identity test
|
|
|
|
Quatf quat_v(v, v); |
|
|
|
Quatf quat_v(v, v); |
|
|
|
TEST(isEqual(quat_v.rotateVector(v), v)); |
|
|
|
EXPECT_EQ(quat_v.rotateVector(v), v); |
|
|
|
// random test (vector norm can not be preserved with a pure rotation)
|
|
|
|
// random test (vector norm can not be preserved with a pure rotation)
|
|
|
|
Vector3f v1(-80.1f, 1.5f, -6.89f); |
|
|
|
Vector3f v1(-80.1f, 1.5f, -6.89f); |
|
|
|
quat_v = Quatf(v1, v); |
|
|
|
quat_v = Quatf(v1, v); |
|
|
|
TEST(isEqual(quat_v.rotateVector(v1).normalized() * v.norm(), v)); |
|
|
|
EXPECT_EQ(quat_v.rotateVector(v1).normalized() * v.norm(), v); |
|
|
|
// special 180 degree case 1
|
|
|
|
// special 180 degree case 1
|
|
|
|
v1 = Vector3f(0.f, 1.f, 1.f); |
|
|
|
v1 = Vector3f(0.f, 1.f, 1.f); |
|
|
|
quat_v = Quatf(v1, -v1); |
|
|
|
quat_v = Quatf(v1, -v1); |
|
|
|
TEST(isEqual(quat_v.rotateVector(v1), -v1)); |
|
|
|
EXPECT_EQ(quat_v.rotateVector(v1), -v1); |
|
|
|
// special 180 degree case 2
|
|
|
|
// special 180 degree case 2
|
|
|
|
v1 = Vector3f(1.f, 2.f, 0.f); |
|
|
|
v1 = Vector3f(1.f, 2.f, 0.f); |
|
|
|
quat_v = Quatf(v1, -v1); |
|
|
|
quat_v = Quatf(v1, -v1); |
|
|
|
TEST(isEqual(quat_v.rotateVector(v1), -v1)); |
|
|
|
EXPECT_EQ(quat_v.rotateVector(v1), -v1); |
|
|
|
// special 180 degree case 3
|
|
|
|
// special 180 degree case 3
|
|
|
|
v1 = Vector3f(0.f, 0.f, 1.f); |
|
|
|
v1 = Vector3f(0.f, 0.f, 1.f); |
|
|
|
quat_v = Quatf(v1, -v1); |
|
|
|
quat_v = Quatf(v1, -v1); |
|
|
|
TEST(isEqual(quat_v.rotateVector(v1), -v1)); |
|
|
|
EXPECT_EQ(quat_v.rotateVector(v1), -v1); |
|
|
|
// special 180 degree case 4
|
|
|
|
// special 180 degree case 4
|
|
|
|
v1 = Vector3f(1.f, 1.f, 1.f); |
|
|
|
v1 = Vector3f(1.f, 1.f, 1.f); |
|
|
|
quat_v = Quatf(v1, -v1); |
|
|
|
quat_v = Quatf(v1, -v1); |
|
|
|
TEST(isEqual(quat_v.rotateVector(v1), -v1)); |
|
|
|
EXPECT_EQ(quat_v.rotateVector(v1), -v1); |
|
|
|
|
|
|
|
|
|
|
|
// quat normalization
|
|
|
|
// quat normalization
|
|
|
|
q.normalize(); |
|
|
|
q.normalize(); |
|
|
|
TEST(isEqual(q, Quatf(0.18257419f, 0.36514837f, |
|
|
|
EXPECT_EQ(q, Quatf(0.18257419f, 0.36514837f, 0.54772256f, 0.73029674f)); |
|
|
|
0.54772256f, 0.73029674f))); |
|
|
|
EXPECT_EQ(q0.unit(), q); |
|
|
|
TEST(isEqual(q0.unit(), q)); |
|
|
|
EXPECT_EQ(q0.unit(), q0.normalized()); |
|
|
|
TEST(isEqual(q0.unit(), q0.normalized())); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// quat default ctor
|
|
|
|
// quat default ctor
|
|
|
|
q = Quatf(); |
|
|
|
q = Quatf(); |
|
|
|
TEST(isEqual(q, Quatf(1, 0, 0, 0))); |
|
|
|
EXPECT_EQ(q, Quatf(1, 0, 0, 0)); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion exponential with v=0
|
|
|
|
// quaternion exponential with v=0
|
|
|
|
v = Vector3f(); |
|
|
|
v = Vector3f(); |
|
|
|
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
Dcmf M = Dcmf() * 0.5f; |
|
|
|
Dcmf M = Dcmf() * 0.5f; |
|
|
|
TEST(isEqual(q, Quatf::expq(v))); |
|
|
|
EXPECT_EQ(q, Quatf::expq(v)); |
|
|
|
TEST(isEqual(M, Quatf::inv_r_jacobian(v))); |
|
|
|
EXPECT_EQ(M, Quatf::inv_r_jacobian(v)); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion exponential with small v
|
|
|
|
// quaternion exponential with small v
|
|
|
|
v = Vector3f(0.001f, 0.002f, -0.003f); |
|
|
|
v = Vector3f(0.001f, 0.002f, -0.003f); |
|
|
@ -109,8 +124,8 @@ int main() |
|
|
|
}; |
|
|
|
}; |
|
|
|
M = Dcmf(M_data); |
|
|
|
M = Dcmf(M_data); |
|
|
|
} |
|
|
|
} |
|
|
|
TEST(isEqual(q, Quatf::expq(v))); |
|
|
|
EXPECT_EQ(q, Quatf::expq(v)); |
|
|
|
TEST(isEqual(M, Quatf::inv_r_jacobian(v))); |
|
|
|
EXPECT_EQ(M, Quatf::inv_r_jacobian(v)); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion exponential with v
|
|
|
|
// quaternion exponential with v
|
|
|
|
v = Vector3f(1.0f, -2.0f, 3.0f); |
|
|
|
v = Vector3f(1.0f, -2.0f, 3.0f); |
|
|
@ -124,8 +139,8 @@ int main() |
|
|
|
}; |
|
|
|
}; |
|
|
|
M = Dcmf(M_data); |
|
|
|
M = Dcmf(M_data); |
|
|
|
} |
|
|
|
} |
|
|
|
TEST(isEqual(q, Quatf::expq(v))); |
|
|
|
EXPECT_EQ(q, Quatf::expq(v)); |
|
|
|
TEST(isEqual(M, Quatf::inv_r_jacobian(v))); |
|
|
|
EXPECT_EQ(M, Quatf::inv_r_jacobian(v)); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion kinematic update
|
|
|
|
// quaternion kinematic update
|
|
|
|
q = Quatf(); |
|
|
|
q = Quatf(); |
|
|
@ -134,40 +149,40 @@ int main() |
|
|
|
Quatf qa = q + 0.5f * h * q.derivative1(w_B); |
|
|
|
Quatf qa = q + 0.5f * h * q.derivative1(w_B); |
|
|
|
qa.normalize(); |
|
|
|
qa.normalize(); |
|
|
|
Quatf qb = q * Quatf::expq(0.5f * h * w_B); |
|
|
|
Quatf qb = q * Quatf::expq(0.5f * h * w_B); |
|
|
|
TEST(isEqual(qa, qb)); |
|
|
|
EXPECT_EQ(qa, qb); |
|
|
|
|
|
|
|
|
|
|
|
// euler to quaternion
|
|
|
|
// euler to quaternion
|
|
|
|
q = Quatf(euler_check); |
|
|
|
q = Quatf(euler_check); |
|
|
|
TEST(isEqual(q, q_check)); |
|
|
|
EXPECT_EQ(q, q_check); |
|
|
|
|
|
|
|
|
|
|
|
// euler to dcm
|
|
|
|
// euler to dcm
|
|
|
|
Dcmf dcm(euler_check); |
|
|
|
Dcmf dcm(euler_check); |
|
|
|
TEST(isEqual(dcm, dcm_check)); |
|
|
|
EXPECT_EQ(dcm, dcm_check); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion to euler
|
|
|
|
// quaternion to euler
|
|
|
|
Eulerf e1(q_check); |
|
|
|
Eulerf e1(q_check); |
|
|
|
TEST(isEqual(e1, euler_check)); |
|
|
|
EXPECT_EQ(e1, euler_check); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion to dcm
|
|
|
|
// quaternion to dcm
|
|
|
|
Dcmf dcm1(q_check); |
|
|
|
Dcmf dcm1(q_check); |
|
|
|
TEST(isEqual(dcm1, dcm_check)); |
|
|
|
EXPECT_EQ(dcm1, dcm_check); |
|
|
|
// quaternion z-axis unit base vector
|
|
|
|
// quaternion z-axis unit base vector
|
|
|
|
Vector3f q_z = q_check.dcm_z(); |
|
|
|
Vector3f q_z = q_check.dcm_z(); |
|
|
|
Vector3f R_z(dcm_check(0, 2), dcm_check(1, 2), dcm_check(2, 2)); |
|
|
|
Vector3f R_z(dcm_check(0, 2), dcm_check(1, 2), dcm_check(2, 2)); |
|
|
|
TEST(isEqual(q_z, R_z)); |
|
|
|
EXPECT_EQ(q_z, R_z); |
|
|
|
|
|
|
|
|
|
|
|
// dcm default ctor
|
|
|
|
// dcm default ctor
|
|
|
|
Dcmf dcm2; |
|
|
|
Dcmf dcm2; |
|
|
|
SquareMatrix<float, 3> I = eye<float, 3>(); |
|
|
|
SquareMatrix<float, 3> I = eye<float, 3>(); |
|
|
|
TEST(isEqual(dcm2, I)); |
|
|
|
EXPECT_EQ(dcm2, I); |
|
|
|
|
|
|
|
|
|
|
|
// dcm to euler
|
|
|
|
// dcm to euler
|
|
|
|
Eulerf e2(dcm_check); |
|
|
|
Eulerf e2(dcm_check); |
|
|
|
TEST(isEqual(e2, euler_check)); |
|
|
|
EXPECT_EQ(e2, euler_check); |
|
|
|
|
|
|
|
|
|
|
|
// dcm to quaterion
|
|
|
|
// dcm to quaterion
|
|
|
|
Quatf q2(dcm_check); |
|
|
|
Quatf q2(dcm_check); |
|
|
|
TEST(isEqual(q2, q_check)); |
|
|
|
EXPECT_EQ(q2, q_check); |
|
|
|
|
|
|
|
|
|
|
|
// dcm renormalize
|
|
|
|
// dcm renormalize
|
|
|
|
Dcmf A = eye<float, 3>(); |
|
|
|
Dcmf A = eye<float, 3>(); |
|
|
@ -178,15 +193,12 @@ int main() |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
A.renormalize(); |
|
|
|
A.renormalize(); |
|
|
|
float err = 0.0f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (size_t r = 0; r < 3; r++) { |
|
|
|
for (size_t r = 0; r < 3; r++) { |
|
|
|
Vector3f rvec(matrix::Matrix<float, 1, 3>(A.row(r)).transpose()); |
|
|
|
Vector3f rvec(matrix::Matrix<float, 1, 3>(A.row(r)).transpose()); |
|
|
|
err += fabs(1.0f - rvec.length()); |
|
|
|
EXPECT_FLOAT_EQ(1.0f, rvec.length()); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
TEST(err < eps); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// constants
|
|
|
|
// constants
|
|
|
|
double deg2rad = M_PI / 180.0; |
|
|
|
double deg2rad = M_PI / 180.0; |
|
|
|
double rad2deg = 180.0 / M_PI; |
|
|
|
double rad2deg = 180.0 / M_PI; |
|
|
@ -199,11 +211,11 @@ int main() |
|
|
|
double roll_expected = roll; |
|
|
|
double roll_expected = roll; |
|
|
|
double yaw_expected = yaw; |
|
|
|
double yaw_expected = yaw; |
|
|
|
|
|
|
|
|
|
|
|
if (fabs(pitch - 90) < eps) { |
|
|
|
if (isEqualF(pitch, 90.0)) { |
|
|
|
roll_expected = 0; |
|
|
|
roll_expected = 0; |
|
|
|
yaw_expected = yaw - roll; |
|
|
|
yaw_expected = yaw - roll; |
|
|
|
|
|
|
|
|
|
|
|
} else if (fabs(pitch + 90) < eps) { |
|
|
|
} else if (isEqualF(pitch, -90.0)) { |
|
|
|
roll_expected = 0; |
|
|
|
roll_expected = 0; |
|
|
|
yaw_expected = yaw + roll; |
|
|
|
yaw_expected = yaw + roll; |
|
|
|
} |
|
|
|
} |
|
|
@ -228,7 +240,7 @@ int main() |
|
|
|
Dcm<double> dcm_from_euler(euler); |
|
|
|
Dcm<double> dcm_from_euler(euler); |
|
|
|
//dcm_from_euler.print();
|
|
|
|
//dcm_from_euler.print();
|
|
|
|
Euler<double> euler_out(dcm_from_euler); |
|
|
|
Euler<double> euler_out(dcm_from_euler); |
|
|
|
TEST(isEqual(rad2deg * euler_expected, rad2deg * euler_out)); |
|
|
|
EXPECT_EQ(rad2deg * euler_expected, rad2deg * euler_out); |
|
|
|
|
|
|
|
|
|
|
|
Eulerf eulerf_expected( |
|
|
|
Eulerf eulerf_expected( |
|
|
|
float(deg2rad)*float(roll_expected), |
|
|
|
float(deg2rad)*float(roll_expected), |
|
|
@ -240,8 +252,8 @@ int main() |
|
|
|
Dcm<float> dcm_from_eulerf; |
|
|
|
Dcm<float> dcm_from_eulerf; |
|
|
|
dcm_from_eulerf = eulerf; |
|
|
|
dcm_from_eulerf = eulerf; |
|
|
|
Euler<float> euler_outf(dcm_from_eulerf); |
|
|
|
Euler<float> euler_outf(dcm_from_eulerf); |
|
|
|
TEST(isEqual(float(rad2deg)*eulerf_expected, |
|
|
|
EXPECT_EQ(float(rad2deg)*eulerf_expected, |
|
|
|
float(rad2deg)*euler_outf)); |
|
|
|
float(rad2deg)*euler_outf); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -250,31 +262,31 @@ int main() |
|
|
|
float data_v4[] = {1, 2, 3, 4}; |
|
|
|
float data_v4[] = {1, 2, 3, 4}; |
|
|
|
Vector<float, 4> v4(data_v4); |
|
|
|
Vector<float, 4> v4(data_v4); |
|
|
|
Quatf q_from_v(v4); |
|
|
|
Quatf q_from_v(v4); |
|
|
|
TEST(isEqual(q_from_v, v4)); |
|
|
|
EXPECT_EQ(q_from_v, v4); |
|
|
|
|
|
|
|
|
|
|
|
Matrix<float, 4, 1> m4(data_v4); |
|
|
|
Matrix<float, 4, 1> m4(data_v4); |
|
|
|
Quatf q_from_m(m4); |
|
|
|
Quatf q_from_m(m4); |
|
|
|
TEST(isEqual(q_from_m, m4)); |
|
|
|
EXPECT_EQ(q_from_m, m4); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion derivative in frame 1
|
|
|
|
// quaternion derivative in frame 1
|
|
|
|
Quatf q1(0, 1, 0, 0); |
|
|
|
Quatf q1(0, 1, 0, 0); |
|
|
|
Vector<float, 4> q1_dot1 = q1.derivative1(Vector3f(1, 2, 3)); |
|
|
|
Vector<float, 4> q1_dot1 = q1.derivative1(Vector3f(1, 2, 3)); |
|
|
|
float data_q_dot1_check[] = { -0.5f, 0.0f, -1.5f, 1.0f}; |
|
|
|
float data_q_dot1_check[] = { -0.5f, 0.0f, -1.5f, 1.0f}; |
|
|
|
Vector<float, 4> q1_dot1_check(data_q_dot1_check); |
|
|
|
Vector<float, 4> q1_dot1_check(data_q_dot1_check); |
|
|
|
TEST(isEqual(q1_dot1, q1_dot1_check)); |
|
|
|
EXPECT_EQ(q1_dot1, q1_dot1_check); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion derivative in frame 2
|
|
|
|
// quaternion derivative in frame 2
|
|
|
|
Vector<float, 4> q1_dot2 = q1.derivative2(Vector3f(1, 2, 3)); |
|
|
|
Vector<float, 4> q1_dot2 = q1.derivative2(Vector3f(1, 2, 3)); |
|
|
|
float data_q_dot2_check[] = { -0.5f, 0.0f, 1.5f, -1.0f}; |
|
|
|
float data_q_dot2_check[] = { -0.5f, 0.0f, 1.5f, -1.0f}; |
|
|
|
Vector<float, 4> q1_dot2_check(data_q_dot2_check); |
|
|
|
Vector<float, 4> q1_dot2_check(data_q_dot2_check); |
|
|
|
TEST(isEqual(q1_dot2, q1_dot2_check)); |
|
|
|
EXPECT_EQ(q1_dot2, q1_dot2_check); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion product
|
|
|
|
// quaternion product
|
|
|
|
Quatf q_prod_check( |
|
|
|
Quatf q_prod_check( |
|
|
|
0.93394439f, 0.0674002f, 0.20851f, 0.28236266f); |
|
|
|
0.93394439f, 0.0674002f, 0.20851f, 0.28236266f); |
|
|
|
TEST(isEqual(q_prod_check, q_check * q_check)); |
|
|
|
EXPECT_EQ(q_prod_check, q_check * q_check); |
|
|
|
q_check *= q_check; |
|
|
|
q_check *= q_check; |
|
|
|
TEST(isEqual(q_prod_check, q_check)); |
|
|
|
EXPECT_EQ(q_prod_check, q_check); |
|
|
|
|
|
|
|
|
|
|
|
// Quaternion scalar multiplication
|
|
|
|
// Quaternion scalar multiplication
|
|
|
|
float scalar = 0.5; |
|
|
|
float scalar = 0.5; |
|
|
@ -282,210 +294,205 @@ int main() |
|
|
|
Quatf q_scalar_mul_check(1.0f * scalar, 2.0f * scalar, |
|
|
|
Quatf q_scalar_mul_check(1.0f * scalar, 2.0f * scalar, |
|
|
|
3.0f * scalar, 4.0f * scalar); |
|
|
|
3.0f * scalar, 4.0f * scalar); |
|
|
|
Quatf q_scalar_mul_res = scalar * q_scalar_mul; |
|
|
|
Quatf q_scalar_mul_res = scalar * q_scalar_mul; |
|
|
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res)); |
|
|
|
EXPECT_EQ(q_scalar_mul_check, q_scalar_mul_res); |
|
|
|
Quatf q_scalar_mul_res2 = q_scalar_mul * scalar; |
|
|
|
Quatf q_scalar_mul_res2 = q_scalar_mul * scalar; |
|
|
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res2)); |
|
|
|
EXPECT_EQ(q_scalar_mul_check, q_scalar_mul_res2); |
|
|
|
Quatf q_scalar_mul_res3(q_scalar_mul); |
|
|
|
Quatf q_scalar_mul_res3(q_scalar_mul); |
|
|
|
q_scalar_mul_res3 *= scalar; |
|
|
|
q_scalar_mul_res3 *= scalar; |
|
|
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res3)); |
|
|
|
EXPECT_EQ(q_scalar_mul_check, q_scalar_mul_res3); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion inverse
|
|
|
|
// quaternion inverse
|
|
|
|
q = q_check.inversed(); |
|
|
|
q = q_check.inversed(); |
|
|
|
TEST(fabs(q_check(0) - q(0)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_check(0), q(0)); |
|
|
|
TEST(fabs(q_check(1) + q(1)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_check(1), -q(1)); |
|
|
|
TEST(fabs(q_check(2) + q(2)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_check(2), -q(2)); |
|
|
|
TEST(fabs(q_check(3) + q(3)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_check(3), -q(3)); |
|
|
|
|
|
|
|
|
|
|
|
q = q_check; |
|
|
|
q = q_check; |
|
|
|
q.invert(); |
|
|
|
q.invert(); |
|
|
|
TEST(fabs(q_check(0) - q(0)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_check(0), q(0)); |
|
|
|
TEST(fabs(q_check(1) + q(1)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_check(1), -q(1)); |
|
|
|
TEST(fabs(q_check(2) + q(2)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_check(2), -q(2)); |
|
|
|
TEST(fabs(q_check(3) + q(3)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_check(3), -q(3)); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion canonical
|
|
|
|
// quaternion canonical
|
|
|
|
Quatf q_non_canonical_1(-0.7f, 0.4f, 0.3f, -0.3f); |
|
|
|
Quatf q_non_canonical_1(-0.7f, 0.4f, 0.3f, -0.3f); |
|
|
|
Quatf q_canonical_1(0.7f, -0.4f, -0.3f, 0.3f); |
|
|
|
Quatf q_canonical_1(0.7f, -0.4f, -0.3f, 0.3f); |
|
|
|
Quatf q_canonical_ref_1(0.7f, -0.4f, -0.3f, 0.3f); |
|
|
|
Quatf q_canonical_ref_1(0.7f, -0.4f, -0.3f, 0.3f); |
|
|
|
TEST(isEqual(q_non_canonical_1.canonical(), q_canonical_ref_1)); |
|
|
|
EXPECT_EQ(q_non_canonical_1.canonical(), q_canonical_ref_1); |
|
|
|
TEST(isEqual(q_canonical_1.canonical(), q_canonical_ref_1)); |
|
|
|
EXPECT_EQ(q_canonical_1.canonical(), q_canonical_ref_1); |
|
|
|
q_non_canonical_1.canonicalize(); |
|
|
|
q_non_canonical_1.canonicalize(); |
|
|
|
q_canonical_1.canonicalize(); |
|
|
|
q_canonical_1.canonicalize(); |
|
|
|
TEST(isEqual(q_non_canonical_1, q_canonical_ref_1)); |
|
|
|
EXPECT_EQ(q_non_canonical_1, q_canonical_ref_1); |
|
|
|
TEST(isEqual(q_canonical_1, q_canonical_ref_1)); |
|
|
|
EXPECT_EQ(q_canonical_1, q_canonical_ref_1); |
|
|
|
|
|
|
|
|
|
|
|
Quatf q_non_canonical_2(0.0f, -1.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_non_canonical_2(0.0f, -1.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_canonical_2(0.0f, 1.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_canonical_2(0.0f, 1.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_canonical_ref_2(0.0f, 1.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_canonical_ref_2(0.0f, 1.0f, 0.0f, 0.0f); |
|
|
|
TEST(isEqual(q_non_canonical_2.canonical(), q_canonical_ref_2)); |
|
|
|
EXPECT_EQ(q_non_canonical_2.canonical(), q_canonical_ref_2); |
|
|
|
TEST(isEqual(q_canonical_2.canonical(), q_canonical_ref_2)); |
|
|
|
EXPECT_EQ(q_canonical_2.canonical(), q_canonical_ref_2); |
|
|
|
q_non_canonical_2.canonicalize(); |
|
|
|
q_non_canonical_2.canonicalize(); |
|
|
|
q_canonical_2.canonicalize(); |
|
|
|
q_canonical_2.canonicalize(); |
|
|
|
TEST(isEqual(q_non_canonical_2, q_canonical_ref_2)); |
|
|
|
EXPECT_EQ(q_non_canonical_2, q_canonical_ref_2); |
|
|
|
TEST(isEqual(q_canonical_2, q_canonical_ref_2)); |
|
|
|
EXPECT_EQ(q_canonical_2, q_canonical_ref_2); |
|
|
|
|
|
|
|
|
|
|
|
Quatf q_non_canonical_3(0.0f, 0.0f, -1.0f, 0.0f); |
|
|
|
Quatf q_non_canonical_3(0.0f, 0.0f, -1.0f, 0.0f); |
|
|
|
Quatf q_canonical_3(0.0f, 0.0f, 1.0f, 0.0f); |
|
|
|
Quatf q_canonical_3(0.0f, 0.0f, 1.0f, 0.0f); |
|
|
|
Quatf q_canonical_ref_3(0.0f, 0.0f, 1.0f, 0.0f); |
|
|
|
Quatf q_canonical_ref_3(0.0f, 0.0f, 1.0f, 0.0f); |
|
|
|
TEST(isEqual(q_non_canonical_3.canonical(), q_canonical_ref_3)); |
|
|
|
EXPECT_EQ(q_non_canonical_3.canonical(), q_canonical_ref_3); |
|
|
|
TEST(isEqual(q_canonical_3.canonical(), q_canonical_ref_3)); |
|
|
|
EXPECT_EQ(q_canonical_3.canonical(), q_canonical_ref_3); |
|
|
|
q_non_canonical_3.canonicalize(); |
|
|
|
q_non_canonical_3.canonicalize(); |
|
|
|
q_canonical_3.canonicalize(); |
|
|
|
q_canonical_3.canonicalize(); |
|
|
|
TEST(isEqual(q_non_canonical_3, q_canonical_ref_3)); |
|
|
|
EXPECT_EQ(q_non_canonical_3, q_canonical_ref_3); |
|
|
|
TEST(isEqual(q_canonical_3, q_canonical_ref_3)); |
|
|
|
EXPECT_EQ(q_canonical_3, q_canonical_ref_3); |
|
|
|
|
|
|
|
|
|
|
|
Quatf q_non_canonical_4(0.0f, 0.0f, 0.0f, -1.0f); |
|
|
|
Quatf q_non_canonical_4(0.0f, 0.0f, 0.0f, -1.0f); |
|
|
|
Quatf q_canonical_4(0.0f, 0.0f, 0.0f, 1.0f); |
|
|
|
Quatf q_canonical_4(0.0f, 0.0f, 0.0f, 1.0f); |
|
|
|
Quatf q_canonical_ref_4(0.0f, 0.0f, 0.0f, 1.0f); |
|
|
|
Quatf q_canonical_ref_4(0.0f, 0.0f, 0.0f, 1.0f); |
|
|
|
TEST(isEqual(q_non_canonical_4.canonical(), q_canonical_ref_4)); |
|
|
|
EXPECT_EQ(q_non_canonical_4.canonical(), q_canonical_ref_4); |
|
|
|
TEST(isEqual(q_canonical_4.canonical(), q_canonical_ref_4)); |
|
|
|
EXPECT_EQ(q_canonical_4.canonical(), q_canonical_ref_4); |
|
|
|
q_non_canonical_4.canonicalize(); |
|
|
|
q_non_canonical_4.canonicalize(); |
|
|
|
q_canonical_4.canonicalize(); |
|
|
|
q_canonical_4.canonicalize(); |
|
|
|
TEST(isEqual(q_non_canonical_4, q_canonical_ref_4)); |
|
|
|
EXPECT_EQ(q_non_canonical_4, q_canonical_ref_4); |
|
|
|
TEST(isEqual(q_canonical_4, q_canonical_ref_4)); |
|
|
|
EXPECT_EQ(q_canonical_4, q_canonical_ref_4); |
|
|
|
|
|
|
|
|
|
|
|
Quatf q_non_canonical_5(0.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_non_canonical_5(0.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_canonical_5(0.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_canonical_5(0.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_canonical_ref_5(0.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
Quatf q_canonical_ref_5(0.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
TEST(isEqual(q_non_canonical_5.canonical(), q_canonical_ref_5)); |
|
|
|
EXPECT_EQ(q_non_canonical_5.canonical(), q_canonical_ref_5); |
|
|
|
TEST(isEqual(q_canonical_5.canonical(), q_canonical_ref_5)); |
|
|
|
EXPECT_EQ(q_canonical_5.canonical(), q_canonical_ref_5); |
|
|
|
q_non_canonical_5.canonicalize(); |
|
|
|
q_non_canonical_5.canonicalize(); |
|
|
|
q_canonical_5.canonicalize(); |
|
|
|
q_canonical_5.canonicalize(); |
|
|
|
TEST(isEqual(q_non_canonical_5, q_canonical_ref_5)); |
|
|
|
EXPECT_EQ(q_non_canonical_5, q_canonical_ref_5); |
|
|
|
TEST(isEqual(q_canonical_5, q_canonical_ref_5)); |
|
|
|
EXPECT_EQ(q_canonical_5, q_canonical_ref_5); |
|
|
|
|
|
|
|
|
|
|
|
// quaternion setIdentity
|
|
|
|
// quaternion setIdentity
|
|
|
|
Quatf q_nonIdentity(-0.7f, 0.4f, 0.5f, -0.3f); |
|
|
|
Quatf q_nonIdentity(-0.7f, 0.4f, 0.5f, -0.3f); |
|
|
|
q_nonIdentity.setIdentity(); |
|
|
|
q_nonIdentity.setIdentity(); |
|
|
|
TEST(isEqual(q_nonIdentity, Quatf())); |
|
|
|
EXPECT_EQ(q_nonIdentity, Quatf()); |
|
|
|
|
|
|
|
|
|
|
|
// non-unit quaternion invese
|
|
|
|
// non-unit quaternion invese
|
|
|
|
Quatf q_nonunit(0.1f, 0.2f, 0.3f, 0.4f); |
|
|
|
Quatf q_nonunit(0.1f, 0.2f, 0.3f, 0.4f); |
|
|
|
TEST(isEqual(q_nonunit * q_nonunit.inversed(), Quatf())); |
|
|
|
EXPECT_EQ(q_nonunit * q_nonunit.inversed(), Quatf()); |
|
|
|
|
|
|
|
|
|
|
|
// rotate quaternion (nonzero rotation)
|
|
|
|
// rotate quaternion (nonzero rotation)
|
|
|
|
Vector3f rot(1.f, 0.f, 0.f); |
|
|
|
Vector3f rot(1.f, 0.f, 0.f); |
|
|
|
Quatf q_test; |
|
|
|
Quatf q_test; |
|
|
|
q_test.rotate(rot); |
|
|
|
q_test.rotate(rot); |
|
|
|
Quatf q_true(cos(1.0f / 2), sin(1.0f / 2), 0.0f, 0.0f); |
|
|
|
Quatf q_true(cos(1.0f / 2), sin(1.0f / 2), 0.0f, 0.0f); |
|
|
|
TEST(isEqual(q_test, q_true)); |
|
|
|
EXPECT_EQ(q_test, q_true); |
|
|
|
|
|
|
|
|
|
|
|
// rotate quaternion (zero rotation)
|
|
|
|
// rotate quaternion (zero rotation)
|
|
|
|
rot(0) = rot(1) = rot(2) = 0.0f; |
|
|
|
rot(0) = rot(1) = rot(2) = 0.0f; |
|
|
|
q_test = Quatf(); |
|
|
|
q_test = Quatf(); |
|
|
|
q_test.rotate(rot); |
|
|
|
q_test.rotate(rot); |
|
|
|
q_true = Quatf(cos(0.0f), sin(0.0f), 0.0f, 0.0f); |
|
|
|
q_true = Quatf(cos(0.0f), sin(0.0f), 0.0f, 0.0f); |
|
|
|
TEST(isEqual(q_test, q_true)); |
|
|
|
EXPECT_EQ(q_test, q_true); |
|
|
|
|
|
|
|
|
|
|
|
// rotate quaternion (random non-commutating rotation)
|
|
|
|
// rotate quaternion (random non-commutating rotation)
|
|
|
|
q = Quatf(AxisAnglef(5.1f, 3.2f, 8.4f)); |
|
|
|
q = Quatf(AxisAnglef(5.1f, 3.2f, 8.4f)); |
|
|
|
rot = Vector3f(1.1f, 2.5f, 3.8f); |
|
|
|
rot = Vector3f(1.1f, 2.5f, 3.8f); |
|
|
|
q.rotate(rot); |
|
|
|
q.rotate(rot); |
|
|
|
q_true = Quatf(0.3019f, 0.2645f, 0.2268f, 0.8874f); |
|
|
|
q_true = Quatf(0.3019f, 0.2645f, 0.2268f, 0.8874f); |
|
|
|
TEST(isEqual(q, q_true)); |
|
|
|
EXPECT_EQ(q, q_true); |
|
|
|
|
|
|
|
|
|
|
|
// get rotation axis from quaternion (nonzero rotation)
|
|
|
|
// get rotation axis from quaternion (nonzero rotation)
|
|
|
|
q = Quatf(cos(1.0f / 2), 0.0f, sin(1.0f / 2), 0.0f); |
|
|
|
q = Quatf(cos(1.0f / 2), 0.0f, sin(1.0f / 2), 0.0f); |
|
|
|
rot = AxisAnglef(q); |
|
|
|
rot = AxisAnglef(q); |
|
|
|
TEST(fabs(rot(0)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(rot(0), 0.0f); |
|
|
|
TEST(fabs(rot(1) - 1.0f) < eps); |
|
|
|
EXPECT_FLOAT_EQ(rot(1), 1.0f); |
|
|
|
TEST(fabs(rot(2)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(rot(2), 0.0f); |
|
|
|
|
|
|
|
|
|
|
|
// get rotation axis from quaternion (zero rotation)
|
|
|
|
// get rotation axis from quaternion (zero rotation)
|
|
|
|
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
rot = AxisAnglef(q); |
|
|
|
rot = AxisAnglef(q); |
|
|
|
TEST(fabs(rot(0)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(rot(0), 0.0f); |
|
|
|
TEST(fabs(rot(1)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(rot(1), 0.0f); |
|
|
|
TEST(fabs(rot(2)) < eps); |
|
|
|
EXPECT_FLOAT_EQ(rot(2), 0.0f); |
|
|
|
|
|
|
|
|
|
|
|
// from axis angle (zero rotation)
|
|
|
|
// from axis angle (zero rotation)
|
|
|
|
rot(0) = rot(1) = rot(2) = 0.0f; |
|
|
|
rot(0) = rot(1) = rot(2) = 0.0f; |
|
|
|
q = Quatf(AxisAnglef(rot)); |
|
|
|
q = Quatf(AxisAnglef(rot)); |
|
|
|
q_true = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
q_true = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
|
|
TEST(isEqual(q, q_true)); |
|
|
|
EXPECT_EQ(q, q_true); |
|
|
|
|
|
|
|
|
|
|
|
// from axis angle, with length of vector the rotation
|
|
|
|
// from axis angle, with length of vector the rotation
|
|
|
|
float n = float(sqrt(4 * M_PI * M_PI / 3)); |
|
|
|
float n = float(sqrt(4 * M_PI * M_PI / 3)); |
|
|
|
q = AxisAnglef(n, n, n); |
|
|
|
q = AxisAnglef(n, n, n); |
|
|
|
TEST(isEqual(q, Quatf(-1, 0, 0, 0))); |
|
|
|
EXPECT_EQ(q, Quatf(-1, 0, 0, 0)); |
|
|
|
q = AxisAnglef(0, 0, 0); |
|
|
|
q = AxisAnglef(0, 0, 0); |
|
|
|
TEST(isEqual(q, Quatf(1, 0, 0, 0))); |
|
|
|
EXPECT_EQ(q, Quatf(1, 0, 0, 0)); |
|
|
|
|
|
|
|
|
|
|
|
// Quaternion initialisation per array
|
|
|
|
// Quaternion initialisation per array
|
|
|
|
float q_array[] = {0.9833f, -0.0343f, -0.1060f, -0.1436f}; |
|
|
|
float q_array[] = {0.9833f, -0.0343f, -0.1060f, -0.1436f}; |
|
|
|
Quaternion<float>q_from_array(q_array); |
|
|
|
Quaternion<float>q_from_array(q_array); |
|
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < 4; i++) { |
|
|
|
for (size_t i = 0; i < 4; i++) { |
|
|
|
TEST(fabs(q_from_array(i) - q_array[i]) < eps); |
|
|
|
EXPECT_FLOAT_EQ(q_from_array(i), q_array[i]); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// axis angle
|
|
|
|
// axis angle
|
|
|
|
AxisAnglef aa_true(Vector3f(1.0f, 2.0f, 3.0f)); |
|
|
|
AxisAnglef aa_true(Vector3f(1.0f, 2.0f, 3.0f)); |
|
|
|
TEST(isEqual(aa_true, Vector3f(1.0f, 2.0f, 3.0f))); |
|
|
|
EXPECT_EQ(aa_true, Vector3f(1.0f, 2.0f, 3.0f)); |
|
|
|
AxisAnglef aa_empty; |
|
|
|
AxisAnglef aa_empty; |
|
|
|
TEST(isEqual(aa_empty, AxisAnglef(0.0f, 0.0f, 0.0f))); |
|
|
|
EXPECT_EQ(aa_empty, AxisAnglef(0.0f, 0.0f, 0.0f)); |
|
|
|
float aa_data[] = {4.0f, 5.0f, 6.0f}; |
|
|
|
float aa_data[] = {4.0f, 5.0f, 6.0f}; |
|
|
|
AxisAnglef aa_data_init(aa_data); |
|
|
|
AxisAnglef aa_data_init(aa_data); |
|
|
|
TEST(isEqual(aa_data_init, AxisAnglef(4.0f, 5.0f, 6.0f))); |
|
|
|
EXPECT_EQ(aa_data_init, AxisAnglef(4.0f, 5.0f, 6.0f)); |
|
|
|
|
|
|
|
|
|
|
|
AxisAnglef aa_norm_check(Vector3f(0.0f, 0.0f, 0.0f)); |
|
|
|
AxisAnglef aa_norm_check(Vector3f(0.0f, 0.0f, 0.0f)); |
|
|
|
TEST(isEqual(aa_norm_check.axis(), Vector3f(1, 0, 0))); |
|
|
|
EXPECT_EQ(aa_norm_check.axis(), Vector3f(1, 0, 0)); |
|
|
|
TEST(isEqualF(aa_norm_check.angle(), 0.0f)); |
|
|
|
EXPECT_FLOAT_EQ(aa_norm_check.angle(), 0.0f); |
|
|
|
|
|
|
|
|
|
|
|
q = Quatf(-0.29555112749297824f, 0.25532186f, 0.51064372f, 0.76596558f); |
|
|
|
q = Quatf(-0.29555112749297824f, 0.25532186f, 0.51064372f, 0.76596558f); |
|
|
|
float r_array[9] = {-0.6949206f, 0.713521f, 0.089292854f, -0.19200698f, -0.30378509f, 0.93319237f, 0.69297814f, 0.63134968f, 0.34810752f}; |
|
|
|
float r_array[9] = {-0.6949206f, 0.713521f, 0.089292854f, -0.19200698f, -0.30378509f, 0.93319237f, 0.69297814f, 0.63134968f, 0.34810752f}; |
|
|
|
R = Dcmf(r_array); |
|
|
|
R = Dcmf(r_array); |
|
|
|
TEST(isEqual(q.imag(), Vector3f(0.25532186f, 0.51064372f, 0.76596558f))); |
|
|
|
EXPECT_EQ(q.imag(), Vector3f(0.25532186f, 0.51064372f, 0.76596558f)); |
|
|
|
|
|
|
|
|
|
|
|
// from dcm
|
|
|
|
// from dcm
|
|
|
|
TEST(isEqual(Quatf(R), q)); |
|
|
|
EXPECT_EQ(Quatf(R), q); |
|
|
|
TEST(isEqual(Quatf(Dcmf(q)), q)); |
|
|
|
EXPECT_EQ(Quatf(Dcmf(q)), q); |
|
|
|
|
|
|
|
|
|
|
|
// to dcm
|
|
|
|
// to dcm
|
|
|
|
TEST(isEqual(Dcmf(q), R)); |
|
|
|
EXPECT_EQ(Dcmf(q), R); |
|
|
|
TEST(isEqual(Dcmf(Quatf(R)), R)); |
|
|
|
EXPECT_EQ(Dcmf(Quatf(R)), R); |
|
|
|
|
|
|
|
|
|
|
|
// conjugate
|
|
|
|
// conjugate
|
|
|
|
v = Vector3f(1.5f, 2.2f, 3.2f); |
|
|
|
v = Vector3f(1.5f, 2.2f, 3.2f); |
|
|
|
TEST(isEqual(q.rotateVectorInverse(v1), Dcmf(q).T()*v1)); |
|
|
|
EXPECT_EQ(q.rotateVectorInverse(v1), Dcmf(q).T()*v1); |
|
|
|
TEST(isEqual(q.rotateVector(v1), Dcmf(q)*v1)); |
|
|
|
EXPECT_EQ(q.rotateVector(v1), Dcmf(q)*v1); |
|
|
|
|
|
|
|
|
|
|
|
AxisAnglef aa_q_init(q); |
|
|
|
AxisAnglef aa_q_init(q); |
|
|
|
TEST(isEqual(aa_q_init, AxisAnglef(1.0f, 2.0f, 3.0f))); |
|
|
|
EXPECT_EQ(aa_q_init, AxisAnglef(1.0f, 2.0f, 3.0f)); |
|
|
|
|
|
|
|
|
|
|
|
AxisAnglef aa_euler_init(Eulerf(0.0f, 0.0f, 0.0f)); |
|
|
|
AxisAnglef aa_euler_init(Eulerf(0.0f, 0.0f, 0.0f)); |
|
|
|
TEST(isEqual(aa_euler_init, Vector3f(0.0f, 0.0f, 0.0f))); |
|
|
|
EXPECT_EQ(aa_euler_init, Vector3f(0.0f, 0.0f, 0.0f)); |
|
|
|
|
|
|
|
|
|
|
|
Dcmf dcm_aa_check = AxisAnglef(dcm_check); |
|
|
|
Dcmf dcm_aa_check = AxisAnglef(dcm_check); |
|
|
|
TEST(isEqual(dcm_aa_check, dcm_check)); |
|
|
|
EXPECT_EQ(dcm_aa_check, dcm_check); |
|
|
|
|
|
|
|
|
|
|
|
AxisAnglef aa_axis_angle_init(Vector3f(1.0f, 2.0f, 3.0f), 3.0f); |
|
|
|
AxisAnglef aa_axis_angle_init(Vector3f(1.0f, 2.0f, 3.0f), 3.0f); |
|
|
|
TEST(isEqual(aa_axis_angle_init, Vector3f(0.80178373f, 1.60356745f, 2.40535118f))); |
|
|
|
EXPECT_EQ(aa_axis_angle_init, Vector3f(0.80178373f, 1.60356745f, 2.40535118f)); |
|
|
|
TEST(isEqual(aa_axis_angle_init.axis(), Vector3f(0.26726124f, 0.53452248f, 0.80178373f))); |
|
|
|
EXPECT_EQ(aa_axis_angle_init.axis(), Vector3f(0.26726124f, 0.53452248f, 0.80178373f)); |
|
|
|
TEST(isEqualF(aa_axis_angle_init.angle(), 3.0f)); |
|
|
|
EXPECT_EQ(aa_axis_angle_init.angle(), 3.0f); |
|
|
|
TEST(isEqual(Quatf((AxisAnglef(Vector3f(0.0f, 0.0f, 1.0f), 0.0f))), |
|
|
|
EXPECT_EQ(Quatf((AxisAnglef(Vector3f(0.0f, 0.0f, 1.0f), 0.0f))), |
|
|
|
Quatf(1.0f, 0.0f, 0.0f, 0.0f))); |
|
|
|
Quatf(1.0f, 0.0f, 0.0f, 0.0f)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// check consistentcy of quaternion and dcm product
|
|
|
|
// check consistentcy of quaternion and dcm product
|
|
|
|
Dcmf dcm3(Eulerf(1, 2, 3)); |
|
|
|
Dcmf dcm3(Eulerf(1, 2, 3)); |
|
|
|
Dcmf dcm4(Eulerf(4, 5, 6)); |
|
|
|
Dcmf dcm4(Eulerf(4, 5, 6)); |
|
|
|
Dcmf dcm34 = dcm3 * dcm4; |
|
|
|
Dcmf dcm34 = dcm3 * dcm4; |
|
|
|
TEST(isEqual(Eulerf(Quatf(dcm3)*Quatf(dcm4)), Eulerf(dcm34))); |
|
|
|
EXPECT_EQ(Eulerf(Quatf(dcm3)*Quatf(dcm4)), Eulerf(dcm34)); |
|
|
|
|
|
|
|
|
|
|
|
// check corner cases of matrix to quaternion conversion
|
|
|
|
// check corner cases of matrix to quaternion conversion
|
|
|
|
q = Quatf(0, 1, 0, 0); // 180 degree rotation around the x axis
|
|
|
|
q = Quatf(0, 1, 0, 0); // 180 degree rotation around the x axis
|
|
|
|
R = Dcmf(q); |
|
|
|
R = Dcmf(q); |
|
|
|
TEST(isEqual(q, Quatf(R))); |
|
|
|
EXPECT_EQ(q, Quatf(R)); |
|
|
|
q = Quatf(0, 0, 1, 0); // 180 degree rotation around the y axis
|
|
|
|
q = Quatf(0, 0, 1, 0); // 180 degree rotation around the y axis
|
|
|
|
R = Dcmf(q); |
|
|
|
R = Dcmf(q); |
|
|
|
TEST(isEqual(q, Quatf(R))); |
|
|
|
EXPECT_EQ(q, Quatf(R)); |
|
|
|
q = Quatf(0, 0, 0, 1); // 180 degree rotation around the z axis
|
|
|
|
q = Quatf(0, 0, 0, 1); // 180 degree rotation around the z axis
|
|
|
|
R = Dcmf(q); |
|
|
|
R = Dcmf(q); |
|
|
|
TEST(isEqual(q, Quatf(R))); |
|
|
|
EXPECT_EQ(q, Quatf(R)); |
|
|
|
|
|
|
|
|
|
|
|
#if defined(SUPPORT_STDIOSTREAM) |
|
|
|
|
|
|
|
std::cout << "q:" << q; |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
return 0; |
|
|
|
|
|
|
|
} |
|
|
|
} |