Browse Source

mc_pos_control: move attitude setpoint to function

Again, no functional change, just refactor.
sbg
Julian Oes 8 years ago committed by Lorenz Meier
parent
commit
432824d603
  1. 205
      src/modules/mc_pos_control/mc_pos_control_main.cpp

205
src/modules/mc_pos_control/mc_pos_control_main.cpp

@ -254,6 +254,7 @@ private: @@ -254,6 +254,7 @@ private:
bool _reset_int_z = true;
bool _reset_int_xy = true;
bool _reset_int_z_manual = false;
bool _reset_yaw_sp = true;
math::Vector<3> _thrust_int;
@ -356,6 +357,8 @@ private: @@ -356,6 +357,8 @@ private:
void do_position_control(float dt);
void generate_attitude_setpoint(float dt);
/**
* Shim for calling task_main from task_create.
*/
@ -1981,6 +1984,105 @@ MulticopterPositionControl::do_position_control(float dt) @@ -1981,6 +1984,105 @@ MulticopterPositionControl::do_position_control(float dt)
}
}
void
MulticopterPositionControl::generate_attitude_setpoint(float dt)
{
/* reset yaw setpoint to current position if needed */
if (_reset_yaw_sp) {
_reset_yaw_sp = false;
_att_sp.yaw_body = _yaw;
}
/* do not move yaw while sitting on the ground */
else if (!_vehicle_land_detected.landed &&
!(!_control_mode.flag_control_altitude_enabled && _manual.z < 0.1f)) {
/* we want to know the real constraint, and global overrides manual */
const float yaw_rate_max = (_params.man_yaw_max < _params.global_yaw_max) ? _params.man_yaw_max :
_params.global_yaw_max;
const float yaw_offset_max = yaw_rate_max / _params.mc_att_yaw_p;
_att_sp.yaw_sp_move_rate = _manual.r * yaw_rate_max;
float yaw_target = _wrap_pi(_att_sp.yaw_body + _att_sp.yaw_sp_move_rate * dt);
float yaw_offs = _wrap_pi(yaw_target - _yaw);
// If the yaw offset became too big for the system to track stop
// shifting it, only allow if it would make the offset smaller again.
if (fabsf(yaw_offs) < yaw_offset_max ||
(_att_sp.yaw_sp_move_rate > 0 && yaw_offs < 0) ||
(_att_sp.yaw_sp_move_rate < 0 && yaw_offs > 0)) {
_att_sp.yaw_body = yaw_target;
}
}
/* control throttle directly if no climb rate controller is active */
if (!_control_mode.flag_control_climb_rate_enabled) {
float thr_val = throttle_curve(_manual.z, _params.thr_hover);
_att_sp.thrust = math::min(thr_val, _manual_thr_max.get());
/* enforce minimum throttle if not landed */
if (!_vehicle_land_detected.landed) {
_att_sp.thrust = math::max(_att_sp.thrust, _manual_thr_min.get());
}
}
/* control roll and pitch directly if no aiding velocity controller is active */
if (!_control_mode.flag_control_velocity_enabled) {
_att_sp.roll_body = _manual.y * _params.man_roll_max;
_att_sp.pitch_body = -_manual.x * _params.man_pitch_max;
/* only if optimal recovery is not used, modify roll/pitch */
if (_params.opt_recover <= 0) {
// construct attitude setpoint rotation matrix. modify the setpoints for roll
// and pitch such that they reflect the user's intention even if a yaw error
// (yaw_sp - yaw) is present. In the presence of a yaw error constructing a rotation matrix
// from the pure euler angle setpoints will lead to unexpected attitude behaviour from
// the user's view as the euler angle sequence uses the yaw setpoint and not the current
// heading of the vehicle.
// calculate our current yaw error
float yaw_error = _wrap_pi(_att_sp.yaw_body - _yaw);
// compute the vector obtained by rotating a z unit vector by the rotation
// given by the roll and pitch commands of the user
math::Vector<3> zB = {0, 0, 1};
math::Matrix<3, 3> R_sp_roll_pitch;
R_sp_roll_pitch.from_euler(_att_sp.roll_body, _att_sp.pitch_body, 0);
math::Vector<3> z_roll_pitch_sp = R_sp_roll_pitch * zB;
// transform the vector into a new frame which is rotated around the z axis
// by the current yaw error. this vector defines the desired tilt when we look
// into the direction of the desired heading
math::Matrix<3, 3> R_yaw_correction;
R_yaw_correction.from_euler(0.0f, 0.0f, -yaw_error);
z_roll_pitch_sp = R_yaw_correction * z_roll_pitch_sp;
// use the formula z_roll_pitch_sp = R_tilt * [0;0;1]
// to calculate the new desired roll and pitch angles
// R_tilt can be written as a function of the new desired roll and pitch
// angles. we get three equations and have to solve for 2 unknowns
_att_sp.pitch_body = asinf(z_roll_pitch_sp(0));
_att_sp.roll_body = -atan2f(z_roll_pitch_sp(1), z_roll_pitch_sp(2));
}
/* copy quaternion setpoint to attitude setpoint topic */
matrix::Quatf q_sp = matrix::Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body);
memcpy(&_att_sp.q_d[0], q_sp.data(), sizeof(_att_sp.q_d));
_att_sp.q_d_valid = true;
}
if (_manual.gear_switch == manual_control_setpoint_s::SWITCH_POS_ON &&
!_vehicle_land_detected.landed) {
_att_sp.landing_gear = 1.0f;
} else if (_manual.gear_switch == manual_control_setpoint_s::SWITCH_POS_OFF) {
_att_sp.landing_gear = -1.0f;
}
_att_sp.timestamp = hrt_absolute_time();
}
void
MulticopterPositionControl::task_main()
@ -2014,7 +2116,6 @@ MulticopterPositionControl::task_main() @@ -2014,7 +2116,6 @@ MulticopterPositionControl::task_main()
/* We really need to know from the beginning if we're landed or in-air. */
orb_copy(ORB_ID(vehicle_land_detected), _vehicle_land_detected_sub, &_vehicle_land_detected);
bool reset_yaw_sp = true;
bool was_armed = false;
hrt_abstime t_prev = 0;
@ -2063,13 +2164,13 @@ MulticopterPositionControl::task_main() @@ -2063,13 +2164,13 @@ MulticopterPositionControl::task_main()
_vel_sp_prev.zero();
_reset_int_z = true;
_reset_int_xy = true;
reset_yaw_sp = true;
_reset_yaw_sp = true;
}
/* reset yaw and altitude setpoint for VTOL which are in fw mode */
if (_vehicle_status.is_vtol) {
if (!_vehicle_status.is_rotary_wing) {
reset_yaw_sp = true;
_reset_yaw_sp = true;
_reset_alt_sp = true;
}
}
@ -2117,104 +2218,10 @@ MulticopterPositionControl::task_main() @@ -2117,104 +2218,10 @@ MulticopterPositionControl::task_main()
/* generate attitude setpoint from manual controls */
if (_control_mode.flag_control_manual_enabled && _control_mode.flag_control_attitude_enabled) {
/* reset yaw setpoint to current position if needed */
if (reset_yaw_sp) {
reset_yaw_sp = false;
_att_sp.yaw_body = _yaw;
}
/* do not move yaw while sitting on the ground */
else if (!_vehicle_land_detected.landed &&
!(!_control_mode.flag_control_altitude_enabled && _manual.z < 0.1f)) {
/* we want to know the real constraint, and global overrides manual */
const float yaw_rate_max = (_params.man_yaw_max < _params.global_yaw_max) ? _params.man_yaw_max :
_params.global_yaw_max;
const float yaw_offset_max = yaw_rate_max / _params.mc_att_yaw_p;
_att_sp.yaw_sp_move_rate = _manual.r * yaw_rate_max;
float yaw_target = _wrap_pi(_att_sp.yaw_body + _att_sp.yaw_sp_move_rate * dt);
float yaw_offs = _wrap_pi(yaw_target - _yaw);
// If the yaw offset became too big for the system to track stop
// shifting it, only allow if it would make the offset smaller again.
if (fabsf(yaw_offs) < yaw_offset_max ||
(_att_sp.yaw_sp_move_rate > 0 && yaw_offs < 0) ||
(_att_sp.yaw_sp_move_rate < 0 && yaw_offs > 0)) {
_att_sp.yaw_body = yaw_target;
}
}
/* control throttle directly if no climb rate controller is active */
if (!_control_mode.flag_control_climb_rate_enabled) {
float thr_val = throttle_curve(_manual.z, _params.thr_hover);
_att_sp.thrust = math::min(thr_val, _manual_thr_max.get());
/* enforce minimum throttle if not landed */
if (!_vehicle_land_detected.landed) {
_att_sp.thrust = math::max(_att_sp.thrust, _manual_thr_min.get());
}
}
/* control roll and pitch directly if no aiding velocity controller is active */
if (!_control_mode.flag_control_velocity_enabled) {
_att_sp.roll_body = _manual.y * _params.man_roll_max;
_att_sp.pitch_body = -_manual.x * _params.man_pitch_max;
/* only if optimal recovery is not used, modify roll/pitch */
if (_params.opt_recover <= 0) {
// construct attitude setpoint rotation matrix. modify the setpoints for roll
// and pitch such that they reflect the user's intention even if a yaw error
// (yaw_sp - yaw) is present. In the presence of a yaw error constructing a rotation matrix
// from the pure euler angle setpoints will lead to unexpected attitude behaviour from
// the user's view as the euler angle sequence uses the yaw setpoint and not the current
// heading of the vehicle.
// calculate our current yaw error
float yaw_error = _wrap_pi(_att_sp.yaw_body - _yaw);
// compute the vector obtained by rotating a z unit vector by the rotation
// given by the roll and pitch commands of the user
math::Vector<3> zB = {0, 0, 1};
math::Matrix<3, 3> R_sp_roll_pitch;
R_sp_roll_pitch.from_euler(_att_sp.roll_body, _att_sp.pitch_body, 0);
math::Vector<3> z_roll_pitch_sp = R_sp_roll_pitch * zB;
// transform the vector into a new frame which is rotated around the z axis
// by the current yaw error. this vector defines the desired tilt when we look
// into the direction of the desired heading
math::Matrix<3, 3> R_yaw_correction;
R_yaw_correction.from_euler(0.0f, 0.0f, -yaw_error);
z_roll_pitch_sp = R_yaw_correction * z_roll_pitch_sp;
// use the formula z_roll_pitch_sp = R_tilt * [0;0;1]
// R_tilt is computed from_euler; only true if cos(roll) not equal zero
// -> valid if roll is not +-pi/2;
_att_sp.roll_body = -asinf(z_roll_pitch_sp(1));
_att_sp.pitch_body = atan2f(z_roll_pitch_sp(0), z_roll_pitch_sp(2));
}
/* copy quaternion setpoint to attitude setpoint topic */
matrix::Quatf q_sp = matrix::Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body);
memcpy(&_att_sp.q_d[0], q_sp.data(), sizeof(_att_sp.q_d));
_att_sp.q_d_valid = true;
}
if (_manual.gear_switch == manual_control_setpoint_s::SWITCH_POS_ON &&
!_vehicle_land_detected.landed) {
_att_sp.landing_gear = 1.0f;
} else if (_manual.gear_switch == manual_control_setpoint_s::SWITCH_POS_OFF) {
_att_sp.landing_gear = -1.0f;
}
_att_sp.timestamp = hrt_absolute_time();
generate_attitude_setpoint(dt);
} else {
reset_yaw_sp = true;
_reset_yaw_sp = true;
_att_sp.yaw_sp_move_rate = 0.0f;
}

Loading…
Cancel
Save