|
|
|
@ -129,85 +129,79 @@ bool Ekf::gps_is_good(struct gps_message *gps)
@@ -129,85 +129,79 @@ bool Ekf::gps_is_good(struct gps_message *gps)
|
|
|
|
|
_gps_error_norm = fmaxf((gps->eph / _params.req_hacc) , (gps->epv / _params.req_vacc)); |
|
|
|
|
_gps_error_norm = fmaxf(_gps_error_norm , (gps->sacc / _params.req_sacc)); |
|
|
|
|
|
|
|
|
|
// Calculate position movement since last measurement
|
|
|
|
|
float delta_posN = 0.0f; |
|
|
|
|
float delta_PosE = 0.0f; |
|
|
|
|
// Calculate time lapsed since last update, limit to prevent numerical errors and calculate a lowpass filter coefficient
|
|
|
|
|
const float filt_time_const = 10.0f; |
|
|
|
|
float dt = fminf(fmaxf(float(_time_last_imu - _gps_pos_prev.timestamp) * 1e-6f, 0.001f), filt_time_const); |
|
|
|
|
float filter_coef = dt / filt_time_const; |
|
|
|
|
|
|
|
|
|
// The following checks are only valid when the vehicle is at rest
|
|
|
|
|
double lat = gps->lat * 1.0e-7; |
|
|
|
|
double lon = gps->lon * 1.0e-7; |
|
|
|
|
if (!_control_status.flags.in_air && _vehicle_at_rest) { |
|
|
|
|
// Calculate position movement since last measurement
|
|
|
|
|
float delta_posN = 0.0f; |
|
|
|
|
float delta_PosE = 0.0f; |
|
|
|
|
|
|
|
|
|
// calculate position movement since last GPS fix
|
|
|
|
|
if (_gps_pos_prev.timestamp > 0) { |
|
|
|
|
map_projection_project(&_gps_pos_prev, lat, lon, &delta_posN, &delta_PosE); |
|
|
|
|
// calculate position movement since last GPS fix
|
|
|
|
|
if (_gps_pos_prev.timestamp > 0) { |
|
|
|
|
map_projection_project(&_gps_pos_prev, lat, lon, &delta_posN, &delta_PosE); |
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
|
// no previous position has been set
|
|
|
|
|
map_projection_init_timestamped(&_gps_pos_prev, lat, lon, _time_last_imu); |
|
|
|
|
_gps_alt_prev = 1e-3f * (float)gps->alt; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Calculate time lapsed since last update, limit to prevent numerical errors and calculate the lowpass filter coefficient
|
|
|
|
|
const float filt_time_const = 10.0f; |
|
|
|
|
float dt = fminf(fmaxf(float(_time_last_imu - _gps_pos_prev.timestamp) * 1e-6f, 0.001f), filt_time_const); |
|
|
|
|
float filter_coef = dt / filt_time_const; |
|
|
|
|
} else { |
|
|
|
|
// no previous position has been set
|
|
|
|
|
map_projection_init_timestamped(&_gps_pos_prev, lat, lon, _time_last_imu); |
|
|
|
|
_gps_alt_prev = 1e-3f * (float)gps->alt; |
|
|
|
|
|
|
|
|
|
// save GPS fix for next time
|
|
|
|
|
map_projection_init_timestamped(&_gps_pos_prev, lat, lon, _time_last_imu); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Calculate the horizontal drift velocity components and limit to 10x the threshold
|
|
|
|
|
float vel_limit = 10.0f * _params.req_hdrift; |
|
|
|
|
float velN = fminf(fmaxf(delta_posN / dt, -vel_limit), vel_limit); |
|
|
|
|
float velE = fminf(fmaxf(delta_PosE / dt, -vel_limit), vel_limit); |
|
|
|
|
// Calculate the horizontal drift velocity components and limit to 10x the threshold
|
|
|
|
|
float vel_limit = 10.0f * _params.req_hdrift; |
|
|
|
|
float velN = fminf(fmaxf(delta_posN / dt, -vel_limit), vel_limit); |
|
|
|
|
float velE = fminf(fmaxf(delta_PosE / dt, -vel_limit), vel_limit); |
|
|
|
|
|
|
|
|
|
// Apply a low pass filter
|
|
|
|
|
_gpsDriftVelN = velN * filter_coef + _gpsDriftVelN * (1.0f - filter_coef); |
|
|
|
|
_gpsDriftVelE = velE * filter_coef + _gpsDriftVelE * (1.0f - filter_coef); |
|
|
|
|
// Apply a low pass filter
|
|
|
|
|
_gpsDriftVelN = velN * filter_coef + _gpsDriftVelN * (1.0f - filter_coef); |
|
|
|
|
_gpsDriftVelE = velE * filter_coef + _gpsDriftVelE * (1.0f - filter_coef); |
|
|
|
|
|
|
|
|
|
// Calculate the horizontal drift speed and fail if too high
|
|
|
|
|
// This check can only be used if the vehicle is stationary during alignment
|
|
|
|
|
if (!_control_status.flags.in_air) { |
|
|
|
|
// Calculate the horizontal drift speed and fail if too high
|
|
|
|
|
float drift_speed = sqrtf(_gpsDriftVelN * _gpsDriftVelN + _gpsDriftVelE * _gpsDriftVelE); |
|
|
|
|
_gps_check_fail_status.flags.hdrift = (drift_speed > _params.req_hdrift); |
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
|
_gps_check_fail_status.flags.hdrift = false; |
|
|
|
|
} |
|
|
|
|
// Calculate the vertical drift velocity and limit to 10x the threshold
|
|
|
|
|
float vz_drift_limit = 10.0f * _params.req_vdrift; |
|
|
|
|
float gps_alt_m = 1e-3f * (float)gps->alt; |
|
|
|
|
float velD = math::constrain(((_gps_alt_prev - gps_alt_m) / dt), -vz_drift_limit, vz_drift_limit); |
|
|
|
|
|
|
|
|
|
// Calculate the vertical drift velocity and limit to 10x the threshold
|
|
|
|
|
vel_limit = 10.0f * _params.req_vdrift; |
|
|
|
|
float gps_alt_m = 1e-3f * (float)gps->alt; |
|
|
|
|
float velD = math::constrain(((_gps_alt_prev - gps_alt_m) / dt), -vel_limit, vel_limit); |
|
|
|
|
_gps_alt_prev = gps_alt_m; |
|
|
|
|
// Apply a low pass filter to the vertical velocity
|
|
|
|
|
_gps_drift_velD = velD * filter_coef + _gps_drift_velD * (1.0f - filter_coef); |
|
|
|
|
|
|
|
|
|
// Apply a low pass filter to the vertical velocity
|
|
|
|
|
_gps_drift_velD = velD * filter_coef + _gps_drift_velD * (1.0f - filter_coef); |
|
|
|
|
|
|
|
|
|
// Fail if the vertical drift speed is too high
|
|
|
|
|
// This check can only be used if the vehicle is stationary during alignment
|
|
|
|
|
if (!_control_status.flags.in_air) { |
|
|
|
|
// Fail if the vertical drift speed is too high
|
|
|
|
|
_gps_check_fail_status.flags.vdrift = (fabsf(_gps_drift_velD) > _params.req_vdrift); |
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
|
_gps_check_fail_status.flags.vdrift = false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Check the magnitude of the filtered horizontal GPS velocity
|
|
|
|
|
// This check can only be used if the vehicle is stationary during alignment
|
|
|
|
|
if (!_control_status.flags.in_air) { |
|
|
|
|
vel_limit = 10.0f * _params.req_hdrift; |
|
|
|
|
float gps_velN = fminf(fmaxf(gps->vel_ned[0], -vel_limit), vel_limit); |
|
|
|
|
float gps_velE = fminf(fmaxf(gps->vel_ned[1], -vel_limit), vel_limit); |
|
|
|
|
// Check the magnitude of the filtered horizontal GPS velocity
|
|
|
|
|
float vxy_drift_limit = 10.0f * _params.req_hdrift; |
|
|
|
|
float gps_velN = fminf(fmaxf(gps->vel_ned[0], -vxy_drift_limit), vxy_drift_limit); |
|
|
|
|
float gps_velE = fminf(fmaxf(gps->vel_ned[1], -vxy_drift_limit), vxy_drift_limit); |
|
|
|
|
_gps_velN_filt = gps_velN * filter_coef + _gps_velN_filt * (1.0f - filter_coef); |
|
|
|
|
_gps_velE_filt = gps_velE * filter_coef + _gps_velE_filt * (1.0f - filter_coef); |
|
|
|
|
float horiz_speed = sqrtf(_gps_velN_filt * _gps_velN_filt + _gps_velE_filt * _gps_velE_filt); |
|
|
|
|
_gps_check_fail_status.flags.hspeed = (horiz_speed > _params.req_hdrift); |
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
|
} else if (_control_status.flags.in_air) { |
|
|
|
|
// These checks are always declared as passed when flying
|
|
|
|
|
// If on ground and moving, the last result before movemenent commenced is kept
|
|
|
|
|
_gps_check_fail_status.flags.hdrift = false; |
|
|
|
|
_gps_check_fail_status.flags.vdrift = false; |
|
|
|
|
_gps_check_fail_status.flags.hspeed = false; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// save GPS fix for next time
|
|
|
|
|
map_projection_init_timestamped(&_gps_pos_prev, lat, lon, _time_last_imu); |
|
|
|
|
_gps_alt_prev = 1e-3f * (float)gps->alt; |
|
|
|
|
|
|
|
|
|
// Check the filtered difference between GPS and EKF vertical velocity
|
|
|
|
|
vel_limit = 10.0f * _params.req_vdrift; |
|
|
|
|
float vertVel = fminf(fmaxf((gps->vel_ned[2] - _state.vel(2)), -vel_limit), vel_limit); |
|
|
|
|
float vz_diff_limit = 10.0f * _params.req_vdrift; |
|
|
|
|
float vertVel = fminf(fmaxf((gps->vel_ned[2] - _state.vel(2)), -vz_diff_limit), vz_diff_limit); |
|
|
|
|
_gps_velD_diff_filt = vertVel * filter_coef + _gps_velD_diff_filt * (1.0f - filter_coef); |
|
|
|
|
_gps_check_fail_status.flags.vspeed = (fabsf(_gps_velD_diff_filt) > _params.req_vdrift); |
|
|
|
|
|
|
|
|
|