Browse Source

EKF: Improve initialisation of quaternion covariances

Convert uncertainty in initial rotate vector into quaternion covariances using symbolic toolbox derived expressions.
Enable setting of initial angle uncertainty via a parameter
master
Paul Riseborough 9 years ago
parent
commit
57b2a256f7
  1. 6
      EKF/common.h
  2. 11
      EKF/covariance.cpp
  3. 3
      EKF/ekf.h
  4. 108
      EKF/ekf_helper.cpp

6
EKF/common.h

@ -197,9 +197,10 @@ struct parameters { @@ -197,9 +197,10 @@ struct parameters {
float terrain_p_noise; // process noise for terrain offset (m/sec)
float terrain_gradient; // gradient of terrain used to estimate process noise due to changing position (m/m)
// initial switch on bias uncertainty
// initialisation errors
float switch_on_gyro_bias; // 1-sigma gyro bias uncertainty at switch on (rad/sec)
float switch_on_accel_bias; // 1-sigma accelerometer bias uncertainty at switch on (m/s**2)
float initial_tilt_err; // 1-sigma tilt error after initial alignment using gravity vector (rad)
// position and velocity fusion
float gps_vel_noise; // observation noise for gps velocity fusion (m/sec)
@ -292,9 +293,10 @@ struct parameters { @@ -292,9 +293,10 @@ struct parameters {
terrain_p_noise = 5.0f;
terrain_gradient = 0.5f;
// initial switch on bias uncertainty
// initialisation errors
switch_on_gyro_bias = 0.1f;
switch_on_accel_bias = 0.2f;
initial_tilt_err = 0.1f;
// position and velocity fusion
gps_vel_noise = 5.0e-1f;

11
EKF/covariance.cpp

@ -55,11 +55,12 @@ void Ekf::initialiseCovariance() @@ -55,11 +55,12 @@ void Ekf::initialiseCovariance()
// calculate average prediction time step in sec
float dt = 0.001f * (float)FILTER_UPDATE_PERRIOD_MS;
// quaternion error
P[0][0] = 0.01f;
P[1][1] = 0.01f;
P[2][2] = 0.01f;
P[3][3] = 0.01f;
// define the initial angle uncertainty as variances for a rotation vector
Vector3f rot_vec_var;
rot_vec_var(2) = rot_vec_var(1) = rot_vec_var(0) = sq(_params.initial_tilt_err);
// update the quaternion state covariances
initialiseQuatCovariances(rot_vec_var);
// velocity
P[4][4] = sq(fmaxf(_params.gps_vel_noise, 0.01f));

3
EKF/ekf.h

@ -366,4 +366,7 @@ private: @@ -366,4 +366,7 @@ private:
// rotate quaternion covariances into variances for an equivalent rotation vector
Vector3f calcRotVecVariances();
// initialise the quaternion covariances using rotation vector variances
void initialiseQuatCovariances(Vector3f &rot_vec_var);
};

108
EKF/ekf_helper.cpp

@ -693,3 +693,111 @@ Vector3f Ekf::calcRotVecVariances() @@ -693,3 +693,111 @@ Vector3f Ekf::calcRotVecVariances()
return rot_var_vec;
}
// initialise the quaternion covariances using rotation vector variances
void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var)
{
// calculate an equivalent rotation vector from the quaternion
float q0,q1,q2,q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float delta = 2.0f*acosf(q0);
float scaler = (delta/sinf(delta*0.5f));
float rotX = scaler*q1;
float rotY = scaler*q2;
float rotZ = scaler*q3;
// autocode generated using matlab symbolic toolbox
float t2 = rotX*rotX;
float t4 = rotY*rotY;
float t5 = rotZ*rotZ;
float t6 = t2+t4+t5;
if (t6 > 1e-9f) {
float t7 = sqrtf(t6);
float t8 = t7*0.5f;
float t3 = sinf(t8);
float t9 = t3*t3;
float t10 = 1.0f/t6;
float t11 = 1.0f/sqrtf(t6);
float t12 = cosf(t8);
float t13 = 1.0f/powf(t6,1.5f);
float t14 = t3*t11;
float t15 = rotX*rotY*t3*t13;
float t16 = rotX*rotZ*t3*t13;
float t17 = rotY*rotZ*t3*t13;
float t18 = t2*t10*t12*0.5f;
float t27 = t2*t3*t13;
float t19 = t14+t18-t27;
float t23 = rotX*rotY*t10*t12*0.5f;
float t28 = t15-t23;
float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f;
float t25 = rotX*rotZ*t10*t12*0.5f;
float t31 = t16-t25;
float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f;
float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f;
float t24 = t15-t23;
float t26 = t16-t25;
float t29 = t4*t10*t12*0.5f;
float t34 = t3*t4*t13;
float t30 = t14+t29-t34;
float t32 = t5*t10*t12*0.5f;
float t40 = t3*t5*t13;
float t33 = t14+t32-t40;
float t36 = rotY*rotZ*t10*t12*0.5f;
float t39 = t17-t36;
float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f;
float t37 = t15-t23;
float t38 = t17-t36;
float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25);
float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39;
float t43 = t16-t25;
float t44 = t17-t36;
// auto-code generated using matlab symbolic toolbox
P[0][0] = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f;
P[0][1] = t22;
P[0][2] = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f;
P[0][3] = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f;
P[1][0] = t22;
P[1][1] = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26);
P[1][2] = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P[1][3] = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P[2][0] = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f;
P[2][1] = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P[2][2] = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38);
P[2][3] = t42;
P[3][0] = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f;
P[3][1] = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P[3][2] = t42;
P[3][3] = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44);
} else {
// the equations are badly conditioned so use a small angle approximation
P[0][0] = 0.0f;
P[0][1] = 0.0f;
P[0][2] = 0.0f;
P[0][3] = 0.0f;
P[1][0] = 0.0f;
P[1][1] = 0.25f*rot_vec_var(0);
P[1][2] = 0.0f;
P[1][3] = 0.0f;
P[2][0] = 0.0f;
P[2][1] = 0.0f;
P[2][2] = 0.25f*rot_vec_var(1);
P[2][3] = 0.0f;
P[3][0] = 0.0f;
P[3][1] = 0.0f;
P[3][2] = 0.0f;
P[3][3] = 0.25f*rot_vec_var(2);
}
}

Loading…
Cancel
Save