Julian Kent
5 years ago
committed by
Julian Kent
5 changed files with 575 additions and 0 deletions
@ -0,0 +1,163 @@
@@ -0,0 +1,163 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (c) 2020 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
/**
|
||||
* @file BezierN.cpp |
||||
* Bezier function |
||||
* |
||||
* @author Julian Kent <julian@auterion.com> |
||||
*/ |
||||
|
||||
#include <bezier/BezierN.hpp> |
||||
#include <matrix/Dual.hpp> |
||||
|
||||
namespace |
||||
{ |
||||
|
||||
/*
|
||||
* Generic in-place bezier implementation. Leaves result in first element. |
||||
* |
||||
*/ |
||||
template <typename Scalar, size_t D> |
||||
void calculateBezier(matrix::Vector<Scalar, D> *positions, int N, Scalar t, Scalar one_minus_t) |
||||
{ |
||||
for (int bezier_order = 1; bezier_order < N; bezier_order++) { |
||||
for (int i = 0; i < N - bezier_order; i++) { |
||||
positions[i] = positions[i] * one_minus_t + positions[i + 1] * t; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
namespace bezier |
||||
{ |
||||
|
||||
bool calculateBezierPosVel(const matrix::Vector3f *positions, int N, float t, |
||||
matrix::Vector3f &position, matrix::Vector3f &velocity) |
||||
{ |
||||
if (positions == nullptr || N == 0 || t < 0 || t > 1) { |
||||
return false; |
||||
} |
||||
|
||||
using Df = matrix::Dual<float, 1>; |
||||
using Vector3Df = matrix::Vector3<Df>; |
||||
|
||||
Vector3Df intermediates[N]; |
||||
|
||||
for (int i = 0; i < N; i++) { |
||||
for (int j = 0; j < 3; j++) { |
||||
intermediates[i](j) = positions[i](j); |
||||
} |
||||
} |
||||
|
||||
Df dual_t(t, 0); // derivative with respect to time
|
||||
calculateBezier(intermediates, N, dual_t, Df(1) - dual_t); |
||||
|
||||
position = matrix::collectReals(intermediates[0]); |
||||
velocity = matrix::collectDerivatives(intermediates[0]); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
bool calculateBezierPosVelAcc(const matrix::Vector3f *positions, int N, float t, |
||||
matrix::Vector3f &position, matrix::Vector3f &velocity, matrix::Vector3f &acceleration) |
||||
{ |
||||
if (positions == nullptr || N == 0 || t < 0 || t > 1) { |
||||
return false; |
||||
} |
||||
|
||||
using Df = matrix::Dual<float, 1>; |
||||
using DDf = matrix::Dual<Df, 1>; |
||||
using Vector3DDf = matrix::Vector3<DDf>; |
||||
|
||||
Vector3DDf intermediates[N]; |
||||
|
||||
for (int i = 0; i < N; i++) { |
||||
for (int j = 0; j < 3; j++) { |
||||
intermediates[i](j) = Df(positions[i](j)); |
||||
} |
||||
} |
||||
|
||||
DDf dual_t(Df(t, 0), 0); // 1st and 2nd derivative with respect to time
|
||||
calculateBezier(intermediates, N, dual_t, Df(1) - dual_t); |
||||
|
||||
position = matrix::collectReals(matrix::collectReals(intermediates[0])); |
||||
velocity = matrix::collectReals(matrix::collectDerivatives(intermediates[0])); |
||||
acceleration = matrix::collectDerivatives(matrix::collectDerivatives(intermediates[0])); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
bool calculateBezierYaw(const float *setpoints, int N, float t, float &yaw_setpoint, float &yaw_vel_setpoint) |
||||
{ |
||||
if (setpoints == nullptr || N == 0 || t < 0 || t > 1) { |
||||
return false; |
||||
} |
||||
|
||||
|
||||
using Df = matrix::Dual<float, 1>; |
||||
using Vector1Df = matrix::Vector<Df, 1>; |
||||
|
||||
Vector1Df intermediates[N]; |
||||
|
||||
// all yaw setpoints are wrapped relative to the starting yaw
|
||||
const float offset = setpoints[0]; |
||||
|
||||
for (int i = 0; i < N; i++) { |
||||
intermediates[i](0) = matrix::wrap_pi(setpoints[i] - offset); |
||||
} |
||||
|
||||
Df dual_t (t, 0); // derivative with respect to time
|
||||
calculateBezier(intermediates, N, dual_t, Df(1) - dual_t); |
||||
|
||||
Df result = intermediates[0](0); |
||||
yaw_setpoint = matrix::wrap_pi(result.value + offset); |
||||
yaw_vel_setpoint = result.derivative(0); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
bool calculateT(int64_t start_time, int64_t end_time, int64_t now, float &T) |
||||
{ |
||||
if (now < start_time || end_time < now) { |
||||
return false; |
||||
} |
||||
|
||||
int64_t total_duration = end_time - start_time; |
||||
int64_t elapsed_duration = now - start_time; |
||||
|
||||
T = (float) elapsed_duration / (float) total_duration; |
||||
|
||||
return true; |
||||
} |
||||
|
||||
} |
@ -0,0 +1,76 @@
@@ -0,0 +1,76 @@
|
||||
|
||||
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (C) 2020 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* @file BerzierN.hpp |
||||
* |
||||
* @author Julian Kent <julian@auterion.com> |
||||
* |
||||
* N-order Bezier library designed for time-aware trajectory tracking |
||||
*/ |
||||
|
||||
#pragma once |
||||
#include <matrix/math.hpp> |
||||
|
||||
namespace bezier |
||||
{ |
||||
|
||||
/*
|
||||
* Calculates the location and velocity with respect to T on a given bezier curve of any order. |
||||
* |
||||
*/ |
||||
bool calculateBezierPosVel(const matrix::Vector3f *positions, int N, float t, |
||||
matrix::Vector3f &position, matrix::Vector3f &velocity); |
||||
|
||||
/*
|
||||
* Calculates the position, velocity and acceleration with respect to T on a given bezier curve of any order. |
||||
* |
||||
*/ |
||||
bool calculateBezierPosVelAcc(const matrix::Vector3f *positions, int N, float t, |
||||
matrix::Vector3f &position, matrix::Vector3f &velocity, matrix::Vector3f &acceleration); |
||||
|
||||
/*
|
||||
* Calculates the position and velocity of yaw with respect to t on a bezier curve. |
||||
* All yaw setpoints are wrapped relative to the starting yaw. |
||||
* |
||||
*/ |
||||
bool calculateBezierYaw(const float *setpoints, int N, float t, float &yaw_setpoint, float &yaw_vel_setpoint); |
||||
|
||||
/*
|
||||
* Calculates the fraction between the begin and end time which can be used for fast bezier curve lookups |
||||
*/ |
||||
bool calculateT(int64_t start_time, int64_t end_time, int64_t now, float &T); |
||||
|
||||
} |
@ -0,0 +1,325 @@
@@ -0,0 +1,325 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (C) 2019 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* Test code for the Velocity Smoothing library |
||||
* Run this test only using make tests TESTFILTER=BezierN |
||||
* |
||||
* @author Julian Kent <julian@auterion.com> |
||||
*/ |
||||
|
||||
#include <gtest/gtest.h> |
||||
#include <matrix/matrix/math.hpp> |
||||
|
||||
#include "BezierN.hpp" |
||||
|
||||
TEST(BezierN_calculateBezier, checks_validity) |
||||
{ |
||||
matrix::Vector3f points[10]; |
||||
matrix::Vector3f a, b; |
||||
EXPECT_FALSE(bezier::calculateBezierPosVel(nullptr, 10, 0.5f, a, b)); |
||||
EXPECT_FALSE(bezier::calculateBezierPosVel(points, 0, 0.5f, a, b)); |
||||
EXPECT_FALSE(bezier::calculateBezierPosVel(points, 10, -0.5f, a, b)); |
||||
EXPECT_FALSE(bezier::calculateBezierPosVel(points, 10, 1.5f, a, b)); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezier, checks_validity_accel) |
||||
{ |
||||
matrix::Vector3f points[10]; |
||||
matrix::Vector3f a, b, c; |
||||
EXPECT_FALSE(bezier::calculateBezierPosVelAcc(nullptr, 10, 0.5f, a, b, c)); |
||||
EXPECT_FALSE(bezier::calculateBezierPosVelAcc(points, 0, 0.5f, a, b, c)); |
||||
EXPECT_FALSE(bezier::calculateBezierPosVelAcc(points, 10, -0.5f, a, b, c)); |
||||
EXPECT_FALSE(bezier::calculateBezierPosVelAcc(points, 10, 1.5f, a, b, c)); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezier, work_1_point) |
||||
{ |
||||
// GIVEN: a single point bezier curve
|
||||
matrix::Vector3f points[2] = {matrix::Vector3f(1, 2, 3), matrix::Vector3f(NAN, NAN, NAN)}; |
||||
matrix::Vector3f pos, vel; |
||||
pos *= NAN; |
||||
vel *= NAN; |
||||
|
||||
// WHEN: we get the half-way point
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 1, 0.5f, pos, vel)); |
||||
|
||||
// THEN: it should be the same as the point, and the velocity should be 0
|
||||
EXPECT_EQ((pos - points[0]).norm(), 0.f); |
||||
EXPECT_EQ(vel.norm(), 0.f); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezier, works_2_points) |
||||
{ |
||||
// GIVEN: a 2-point bezier curve
|
||||
matrix::Vector3f points[3] = {matrix::Vector3f(1, 2, 3), matrix::Vector3f(5, 0, 1), matrix::Vector3f(NAN, NAN, NAN)}; |
||||
matrix::Vector3f pos, vel; |
||||
pos *= NAN; |
||||
vel *= NAN; |
||||
|
||||
// WHEN: we get the half-way point
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 2, 0.5f, pos, vel)); |
||||
|
||||
// THEN: the position should be the mid-point between the start and end, and velocity should be the length
|
||||
EXPECT_EQ((pos - matrix::Vector3f(3, 1, 2)).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel - (points[1] - points[0])).norm(), 0.f); |
||||
|
||||
// WHEN: we get the beginning point
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 2, 0.f, pos, vel)); |
||||
|
||||
// THEN: the position should be the first point, and the velocity should still be the length
|
||||
EXPECT_EQ((pos - points[0]).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel - (points[1] - points[0])).norm(), 0.f); |
||||
|
||||
// WHEN: we get the end point
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 2, 1.f, pos, vel)); |
||||
|
||||
// THEN: the position should be the first point, and the velocity should still be the length
|
||||
EXPECT_EQ((pos - points[1]).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel - (points[1] - points[0])).norm(), 0.f); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezier, works_3_points_zero_accel) |
||||
{ |
||||
// GIVEN: 3 points bezier, evenly spaced in a straight line
|
||||
matrix::Vector3f points[4] = {matrix::Vector3f(1, 2, 3), matrix::Vector3f(5, 0, 1), matrix::Vector3f(9, -2, -1), matrix::Vector3f(NAN, NAN, NAN)}; |
||||
matrix::Vector3f pos, vel; |
||||
pos *= NAN; |
||||
vel *= NAN; |
||||
|
||||
// WHEN: we get the half-way point
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 3, 0.5f, pos, vel)); |
||||
|
||||
// THEN: it should be the middle point, with velocity of 1st to last
|
||||
EXPECT_FLOAT_EQ((pos - points[1]).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel - (points[2] - points[0])).norm(), 0.f); |
||||
|
||||
matrix::Vector3f pos2, vel2, accel2; |
||||
|
||||
// WHEN: we use the accel interface
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVelAcc(points, 3, 0.5f, pos2, vel2, accel2)); |
||||
|
||||
// THEN: it should give same position, velocity as the non-accel interface, and zero accel (since this curve is 0 accel)
|
||||
EXPECT_FLOAT_EQ((pos2 - pos).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel2 - vel).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ(accel2.norm(), 0.f); |
||||
|
||||
// WHEN: we check at the beginning
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 3, 0.f, pos, vel)); |
||||
EXPECT_TRUE(bezier::calculateBezierPosVelAcc(points, 3, 0.f, pos2, vel2, accel2)); |
||||
|
||||
// THEN: it should be the starting point and same velocity
|
||||
EXPECT_FLOAT_EQ((pos - points[0]).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel - (points[2] - points[0])).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((pos2 - pos).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel2 - vel).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ(accel2.norm(), 0.f); |
||||
|
||||
// WHEN: we check at the end
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 3, 1.f, pos, vel)); |
||||
EXPECT_TRUE(bezier::calculateBezierPosVelAcc(points, 3, 1.f, pos2, vel2, accel2)); |
||||
|
||||
// THEN: it should be the ending point and same velocity
|
||||
EXPECT_FLOAT_EQ((pos - points[2]).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel - (points[2] - points[0])).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((pos2 - pos).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel2 - vel).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ(accel2.norm(), 0.f); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezier, works_3_points_accel) |
||||
{ |
||||
// GIVEN: 3 points bezier, in a curve
|
||||
matrix::Vector3f points[4] = {matrix::Vector3f(1, 2, 3), matrix::Vector3f(5, 0, 1), matrix::Vector3f(19, -8, 1), matrix::Vector3f(NAN, NAN, NAN)}; |
||||
matrix::Vector3f pos, vel; |
||||
pos *= NAN; |
||||
vel *= NAN; |
||||
|
||||
matrix::Vector3f pos2; |
||||
pos2 *= NAN; |
||||
|
||||
matrix::Vector3f accel_start, accel_mid, accel_end; |
||||
matrix::Vector3f vel_start, vel_mid, vel_end; |
||||
|
||||
|
||||
// WHEN: we check at the beginning
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 3, 0.f, pos, vel)); |
||||
EXPECT_TRUE(bezier::calculateBezierPosVelAcc(points, 3, 0.f, pos2, vel_start, accel_start)); |
||||
|
||||
// THEN: it should give same position, velocity as the non-accel interface, and non-zero accel
|
||||
EXPECT_FLOAT_EQ((pos2 - pos).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel_start - vel).norm(), 0.f); |
||||
EXPECT_GT(accel_start.norm(), 0.f); |
||||
|
||||
// WHEN: we use the accel interface to get the half-way point
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 3, 0.5f, pos, vel)); |
||||
EXPECT_TRUE(bezier::calculateBezierPosVelAcc(points, 3, 0.5f, pos2, vel_mid, accel_mid)); |
||||
|
||||
// THEN: the values should matche between accel and non-accel version
|
||||
EXPECT_FLOAT_EQ((pos2 - pos).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel_mid - vel).norm(), 0.f); |
||||
|
||||
// AND: the accel should be the same as the start
|
||||
EXPECT_FLOAT_EQ((accel_mid - accel_start).norm(), 0.f); |
||||
|
||||
|
||||
// WHEN: we check at the end
|
||||
EXPECT_TRUE(bezier::calculateBezierPosVel(points, 3, 1.f, pos, vel)); |
||||
EXPECT_TRUE(bezier::calculateBezierPosVelAcc(points, 3, 1.f, pos2, vel_end, accel_end)); |
||||
|
||||
// THEN: it should be the ending point, and accel should match
|
||||
EXPECT_FLOAT_EQ((pos - points[2]).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((pos2 - pos).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((vel_end - vel).norm(), 0.f); |
||||
EXPECT_FLOAT_EQ((accel_end - accel_start).norm(), 0.f); |
||||
|
||||
// FINALLY: mid point velocity should be average of start and end velocity
|
||||
EXPECT_FLOAT_EQ((vel_mid - 0.5f * (vel_start + vel_end)).norm(), 0.f); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezierYaw, checks_validity) |
||||
{ |
||||
float points[10]; |
||||
float a, b; |
||||
EXPECT_FALSE(bezier::calculateBezierYaw(nullptr, 10, 0.5f, a, b)); |
||||
EXPECT_FALSE(bezier::calculateBezierYaw(points, 0, 0.5f, a, b)); |
||||
EXPECT_FALSE(bezier::calculateBezierYaw(points, 10, -0.5f, a, b)); |
||||
EXPECT_FALSE(bezier::calculateBezierYaw(points, 10, 1.5f, a, b)); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezierYaw, work_1_point) |
||||
{ |
||||
// GIVEN: a single yaw point
|
||||
float points[2] = {M_PI / 2, NAN}; |
||||
float yaw, yaw_speed; |
||||
|
||||
// WHEN: we use it as a 1-point bezier curve
|
||||
EXPECT_TRUE(bezier::calculateBezierYaw(points, 1, 0.5f, yaw, yaw_speed)); |
||||
|
||||
// THEN: it should have that same value, and the velocity should be 0
|
||||
EXPECT_FLOAT_EQ(yaw, M_PI / 2); |
||||
EXPECT_FLOAT_EQ(yaw_speed, 0); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezierYaw, work_2_points) |
||||
{ |
||||
// GIVEN: a single yaw point
|
||||
float points[3] = {0, M_PI / 2, NAN}; |
||||
float yaw, yaw_speed; |
||||
|
||||
// WHEN: we get the beginning
|
||||
EXPECT_TRUE(bezier::calculateBezierYaw(points, 2, 0.f, yaw, yaw_speed)); |
||||
|
||||
// THEN: it should have the beginning value, and the velocity should be the difference between first and last
|
||||
EXPECT_FLOAT_EQ(yaw, 0); |
||||
EXPECT_FLOAT_EQ(yaw_speed, M_PI / 2); |
||||
|
||||
// WHEN: we get the middle
|
||||
EXPECT_TRUE(bezier::calculateBezierYaw(points, 2, 0.5f, yaw, yaw_speed)); |
||||
|
||||
// THEN: it should have the beginning value, and the velocity should be the difference between first and last
|
||||
EXPECT_FLOAT_EQ(yaw, M_PI / 4); |
||||
EXPECT_FLOAT_EQ(yaw_speed, M_PI / 2); |
||||
|
||||
// WHEN: we get the end
|
||||
EXPECT_TRUE(bezier::calculateBezierYaw(points, 2, 1.f, yaw, yaw_speed)); |
||||
|
||||
// THEN: it should have the beginning value, and the velocity should be the difference between first and last
|
||||
EXPECT_FLOAT_EQ(yaw, M_PI / 2); |
||||
EXPECT_FLOAT_EQ(yaw_speed, M_PI / 2); |
||||
} |
||||
|
||||
TEST(BezierN_calculateBezierYaw, work_2_points_wrap) |
||||
{ |
||||
// GIVEN: 2 yaw points on either side of the +- PI wrap line
|
||||
float points[3] = {-M_PI + 0.1, M_PI - 0.1, NAN}; |
||||
float yaw, yaw_speed; |
||||
|
||||
// WHEN: we get the beginning
|
||||
EXPECT_TRUE(bezier::calculateBezierYaw(points, 2, 0.f, yaw, yaw_speed)); |
||||
|
||||
// THEN: it should have the beginning value, and the velocity should be the wrapped distance between first and last
|
||||
EXPECT_FLOAT_EQ(yaw, -M_PI + 0.1); |
||||
EXPECT_NEAR(yaw_speed, -0.2, 1e-6f); |
||||
|
||||
// WHEN: we get the middle
|
||||
EXPECT_TRUE(bezier::calculateBezierYaw(points, 2, 0.5f, yaw, yaw_speed)); |
||||
|
||||
// THEN: it should have the wrapped middle value, and the velocity should be the wrapped distance between first and last
|
||||
EXPECT_FLOAT_EQ(matrix::wrap_pi(yaw - float(M_PI)), 0); |
||||
EXPECT_NEAR(yaw_speed, -0.2, 1e-6f); |
||||
|
||||
// WHEN: we get the end
|
||||
EXPECT_TRUE(bezier::calculateBezierYaw(points, 2, 1.f, yaw, yaw_speed)); |
||||
|
||||
// THEN: it should have the end value, and the velocity should be the wrapped distance between first and last
|
||||
EXPECT_FLOAT_EQ(yaw, M_PI - 0.1); |
||||
EXPECT_NEAR(yaw_speed, -0.2, 1e-6f); |
||||
} |
||||
|
||||
|
||||
TEST(BezierN_calculateT, rejects_bad_timestamps) |
||||
{ |
||||
float f = NAN; |
||||
EXPECT_FALSE(bezier::calculateT(100, 1000, 99, f)); |
||||
EXPECT_FALSE(bezier::calculateT(100, 1000, 1001, f)); |
||||
EXPECT_FALSE(bezier::calculateT(1001, 1000, 1001, f)); |
||||
} |
||||
|
||||
|
||||
TEST(BezierN_calculateT, begin_middle_end) |
||||
{ |
||||
float f = NAN; |
||||
EXPECT_TRUE(bezier::calculateT(100, 1000, 100, f)); |
||||
EXPECT_FLOAT_EQ(f, 0.f); |
||||
|
||||
EXPECT_TRUE(bezier::calculateT(100, 1000, 550, f)); |
||||
EXPECT_FLOAT_EQ(f, 0.5f); |
||||
|
||||
EXPECT_TRUE(bezier::calculateT(100, 1000, 1000, f)); |
||||
EXPECT_FLOAT_EQ(f, 1.f); |
||||
} |
||||
|
||||
TEST(BezierN_calculateT, giant_offset) |
||||
{ |
||||
int64_t offset = 0xFFFFFFFFFFFF; // 48 bit max
|
||||
float f = NAN; |
||||
EXPECT_TRUE(bezier::calculateT(offset + 100, offset + 1000, offset + 100, f)); |
||||
EXPECT_FLOAT_EQ(f, 0.f); |
||||
|
||||
EXPECT_TRUE(bezier::calculateT(offset + 100, offset + 1000, offset + 550, f)); |
||||
EXPECT_FLOAT_EQ(f, 0.5f); |
||||
|
||||
EXPECT_TRUE(bezier::calculateT(offset + 100, offset + 1000, offset + 1000, f)); |
||||
EXPECT_FLOAT_EQ(f, 1.f); |
||||
} |
Loading…
Reference in new issue