Browse Source

new TDK ICM42670p IMU driver support (#18141)

Co-authored-by: zhaoxiaowei <zhaoxiaowei@efy-tech.com>
master
ShiauweiZhao 3 years ago committed by GitHub
parent
commit
686bcff8a7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 1
      src/drivers/drv_sensor.h
  2. 1
      src/drivers/imu/invensense/CMakeLists.txt
  3. 46
      src/drivers/imu/invensense/icm42670p/CMakeLists.txt
  4. 745
      src/drivers/imu/invensense/icm42670p/ICM42670P.cpp
  5. 184
      src/drivers/imu/invensense/icm42670p/ICM42670P.hpp
  6. 293
      src/drivers/imu/invensense/icm42670p/InvenSense_ICM42670P_registers.hpp
  7. 89
      src/drivers/imu/invensense/icm42670p/icm42670p_main.cpp

1
src/drivers/drv_sensor.h

@ -78,6 +78,7 @@ @@ -78,6 +78,7 @@
#define DRV_IMU_DEVTYPE_ICM40609D 0x27
#define DRV_IMU_DEVTYPE_ICM20948 0x28
#define DRV_IMU_DEVTYPE_ICM42605 0x29
#define DRV_IMU_DEVTYPE_ICM42670P 0x2A
#define DRV_RNG_DEVTYPE_MB12XX 0x31
#define DRV_RNG_DEVTYPE_LL40LS 0x32

1
src/drivers/imu/invensense/CMakeLists.txt

@ -38,6 +38,7 @@ add_subdirectory(icm20689) @@ -38,6 +38,7 @@ add_subdirectory(icm20689)
add_subdirectory(icm40609d)
add_subdirectory(icm42605)
add_subdirectory(icm42688p)
add_subdirectory(icm42670p)
add_subdirectory(mpu6000)
add_subdirectory(mpu6500)
add_subdirectory(mpu9250)

46
src/drivers/imu/invensense/icm42670p/CMakeLists.txt

@ -0,0 +1,46 @@ @@ -0,0 +1,46 @@
############################################################################
#
# Copyright (c) 2021 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
px4_add_module(
MODULE drivers__imu__invensense__icm42670p
MAIN icm42670p
COMPILE_FLAGS
SRCS
icm42670p_main.cpp
ICM42670P.cpp
ICM42670P.hpp
InvenSense_ICM42670P_registers.hpp
DEPENDS
px4_work_queue
drivers_accelerometer
drivers_gyroscope
)

745
src/drivers/imu/invensense/icm42670p/ICM42670P.cpp

@ -0,0 +1,745 @@ @@ -0,0 +1,745 @@
/****************************************************************************
*
* Copyright (c) 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM42670P.hpp"
using namespace time_literals;
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
ICM42670P::ICM42670P(const I2CSPIDriverConfig &config):
SPI(config),
I2CSPIDriver(config),
_drdy_gpio(config.drdy_gpio),
_px4_accel(get_device_id(), config.rotation),
_px4_gyro(get_device_id(), config.rotation)
{
if (_drdy_gpio != 0) {
_drdy_missed_perf = perf_alloc(PC_COUNT, MODULE_NAME": DRDY missed");
}
ConfigureSampleRate(_px4_gyro.get_max_rate_hz());
}
ICM42670P::~ICM42670P()
{
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
perf_free(_drdy_missed_perf);
}
int ICM42670P::init()
{
int ret = SPI::init();
if (ret != PX4_OK) {
DEVICE_DEBUG("SPI::init failed (%i)", ret);
return ret;
}
return Reset() ? 0 : -1;
}
bool ICM42670P::Reset()
{
_state = STATE::RESET;
DataReadyInterruptDisable();
ScheduleClear();
ScheduleNow();
return true;
}
void ICM42670P::exit_and_cleanup()
{
DataReadyInterruptDisable();
I2CSPIDriverBase::exit_and_cleanup();
}
void ICM42670P::print_status()
{
I2CSPIDriverBase::print_status();
PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
perf_print_counter(_drdy_missed_perf);
}
int ICM42670P::probe()
{
const uint8_t whoami = RegisterRead(Register::BANK_0::WHO_AM_I);
if (whoami != WHOAMI) {
DEVICE_DEBUG("unexpected WHO_AM_I 0x%02x", whoami);
return PX4_ERROR;
}
return PX4_OK;
}
void ICM42670P::RunImpl()
{
const hrt_abstime now = hrt_absolute_time();
switch (_state) {
case STATE::RESET:
// DEVICE_CONFIG: Software reset configuration
RegisterWrite(Register::BANK_0::SIGNAL_PATH_RESET, SIGNAL_PATH_RESET_BIT::SOFT_RESET_DEVICE_CONFIG);
_reset_timestamp = now;
_failure_count = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(1_ms); // wait 1 ms for soft reset to be effective
break;
case STATE::WAIT_FOR_RESET:
if ((RegisterRead(Register::BANK_0::WHO_AM_I) == WHOAMI)
&& (RegisterRead(Register::BANK_0::DEVICE_CONFIG) == 0x04)
&& (RegisterRead(Register::BANK_0::INT_STATUS) & INT_STATUS_BIT::RESET_DONE_INT)) {
// Wakeup accel and gyro and schedule remaining configuration
RegisterWrite(Register::BANK_0::PWR_MGMT0, PWR_MGMT0_BIT::GYRO_MODE_LOW_NOISE | PWR_MGMT0_BIT::ACCEL_MODE_LOW_NOISE);
_state = STATE::CONFIGURE;
ScheduleDelayed(30_ms); // 30 ms gyro startup time, 10 ms accel from sleep to valid data
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading from FIFO
_state = STATE::FIFO_READ;
if (DataReadyInterruptConfigure()) {
_data_ready_interrupt_enabled = true;
// backup schedule as a watchdog timeout
ScheduleDelayed(100_ms);
} else {
_data_ready_interrupt_enabled = false;
ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
}
FIFOReset();
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::FIFO_READ: {
uint32_t samples = 0;
if (_data_ready_interrupt_enabled) {
// scheduled from interrupt if _drdy_fifo_read_samples was set as expected
if (_drdy_fifo_read_samples.fetch_and(0) != _fifo_gyro_samples) {
perf_count(_drdy_missed_perf);
} else {
samples = _fifo_gyro_samples;
}
// push backup schedule back
ScheduleDelayed(_fifo_empty_interval_us * 2);
}
if (samples == 0) {
// check current FIFO count
const uint16_t fifo_count = FIFOReadCount();
// PX4_WARN("fifo_count = %d ",fifo_count);
if (fifo_count >= FIFO::SIZE) {
FIFOReset();
perf_count(_fifo_overflow_perf);
} else if (fifo_count == 0) {
perf_count(_fifo_empty_perf);
} else {
// FIFO count (size in bytes)
samples = (fifo_count / sizeof(FIFO::DATA));
if (samples > FIFO_MAX_SAMPLES) {
// not technically an overflow, but more samples than we expected or can publish
FIFOReset();
perf_count(_fifo_overflow_perf);
samples = 0;
// PX4_WARN("samples 1 = %d ",samples);
}
}
}
bool success = false;
if (samples >= 1) {
// PX4_WARN("samples 2 = %d ",samples);
if (FIFORead(now, samples)) {
success = true;
// PX4_WARN("success = %d ",success);
if (_failure_count > 0) {
_failure_count--;
}
}
}
if (!success) {
_failure_count++;
// full reset if things are failing consistently
if (_failure_count > 10) {
Reset();
return;
}
}
if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
// check configuration registers periodically or immediately following any failure
if (RegisterCheck(_register_bank0_cfg[_checked_register_bank0])
) {
_last_config_check_timestamp = now;
_checked_register_bank0 = (_checked_register_bank0 + 1) % size_register_bank0_cfg;
} else {
// register check failed, force reset
perf_count(_bad_register_perf);
Reset();
}
} else {
// periodically update temperature (~1 Hz)
if (hrt_elapsed_time(&_temperature_update_timestamp) >= 1_s) {
UpdateTemperature();
_temperature_update_timestamp = now;
}
}
}
break;
}
}
void ICM42670P::ConfigureAccel()
{
const uint8_t ACCEL_FS_SEL = RegisterRead(Register::BANK_0::ACCEL_CONFIG0) & (Bit7 | Bit6 | Bit5); // 7:5 ACCEL_FS_SEL
switch (ACCEL_FS_SEL) {
case ACCEL_FS_SEL_2G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 16384.f);
_px4_accel.set_range(2.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_4G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 8192.f);
_px4_accel.set_range(4.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_8G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 4096.f);
_px4_accel.set_range(8.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_16G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 2048.f);
_px4_accel.set_range(16.f * CONSTANTS_ONE_G);
break;
}
}
void ICM42670P::ConfigureGyro()
{
const uint8_t GYRO_FS_SEL = RegisterRead(Register::BANK_0::GYRO_CONFIG0) & (Bit7 | Bit6 | Bit5); // 7:5 GYRO_FS_SEL
float range_dps = 0.f;
switch (GYRO_FS_SEL) {
case GYRO_FS_SEL_250_DPS:
range_dps = 250.f;
break;
case GYRO_FS_SEL_500_DPS:
range_dps = 500.f;
break;
case GYRO_FS_SEL_1000_DPS:
range_dps = 1000.f;
break;
case GYRO_FS_SEL_2000_DPS:
range_dps = 2000.f;
break;
}
_px4_gyro.set_scale(math::radians(range_dps / 32768.f));
_px4_gyro.set_range(math::radians(range_dps));
}
void ICM42670P::ConfigureSampleRate(int sample_rate)
{
if (sample_rate == 0) {
sample_rate = 800; // default to 800 Hz
}
// round down to nearest FIFO sample dt
const float min_interval = FIFO_SAMPLE_DT;
_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);
_fifo_gyro_samples = roundf(math::min((float)_fifo_empty_interval_us / (1e6f / GYRO_RATE), (float)FIFO_MAX_SAMPLES));
// recompute FIFO empty interval (us) with actual gyro sample limit
_fifo_empty_interval_us = _fifo_gyro_samples * (1e6f / GYRO_RATE);
ConfigureFIFOWatermark(_fifo_gyro_samples);
}
void ICM42670P::ConfigureFIFOWatermark(uint8_t samples)
{
// FIFO watermark threshold in number of bytes
const uint16_t fifo_watermark_threshold = samples * sizeof(FIFO::DATA);
for (auto &r : _register_bank0_cfg) {
if (r.reg == Register::BANK_0::FIFO_CONFIG2) {
// FIFO_WM[7:0] FIFO_CONFIG2
r.set_bits = fifo_watermark_threshold & 0xFF;
} else if (r.reg == Register::BANK_0::FIFO_CONFIG3) {
// FIFO_WM[11:8] FIFO_CONFIG3
r.set_bits = (fifo_watermark_threshold >> 8) & 0x0F;
}
}
}
bool ICM42670P::Configure()
{
// first set and clear all configured register bits
for (const auto &reg_cfg : _register_bank0_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
Mreg1Config();
// now check that all are configured
bool success = true;
for (const auto &reg_cfg : _register_bank0_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
success = Mreg1Check();
ConfigureAccel();
ConfigureGyro();
return success;
}
int ICM42670P::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
static_cast<ICM42670P *>(arg)->DataReady();
return 0;
}
void ICM42670P::DataReady()
{
uint32_t expected = 0;
if (_drdy_fifo_read_samples.compare_exchange(&expected, _fifo_gyro_samples)) {
ScheduleNow();
}
}
bool ICM42670P::DataReadyInterruptConfigure()
{
if (_drdy_gpio == 0) {
return false;
}
// Setup data ready on falling edge
return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
}
bool ICM42670P::DataReadyInterruptDisable()
{
if (_drdy_gpio == 0) {
return false;
}
return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
}
template <typename T>
bool ICM42670P::RegisterCheck(const T &reg_cfg)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
success = false;
}
return success;
}
template <typename T>
uint8_t ICM42670P::RegisterRead(T reg)
{
uint8_t cmd[2] {};
cmd[0] = static_cast<uint8_t>(reg) | DIR_READ;
transfer(cmd, cmd, sizeof(cmd));
return cmd[1];
}
template <typename T>
void ICM42670P::RegisterWrite(T reg, uint8_t value)
{
uint8_t cmd[2] { (uint8_t)reg, value };
transfer(cmd, cmd, sizeof(cmd));
}
template <typename T>
void ICM42670P::RegisterSetAndClearBits(T reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}
uint16_t ICM42670P::FIFOReadCount()
{
// read FIFO count
uint8_t fifo_count_buf[3] {};
fifo_count_buf[0] = static_cast<uint8_t>(Register::BANK_0::FIFO_COUNTH) | DIR_READ;
if (transfer(fifo_count_buf, fifo_count_buf, sizeof(fifo_count_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return 0;
}
return combine(fifo_count_buf[1], fifo_count_buf[2]);
}
bool ICM42670P::FIFORead(const hrt_abstime &timestamp_sample, uint8_t samples)
{
FIFOTransferBuffer buffer{};
const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 4 + 2, FIFO::SIZE);
if (transfer((uint8_t *)&buffer, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
perf_count(_bad_transfer_perf);
return false;
}
if (buffer.INT_STATUS & INT_STATUS_BIT::FIFO_FULL_INT) {
perf_count(_fifo_overflow_perf);
FIFOReset();
return false;
}
const uint16_t fifo_count_bytes = combine(buffer.FIFO_COUNTH, buffer.FIFO_COUNTL);
if (fifo_count_bytes >= FIFO::SIZE) {
perf_count(_fifo_overflow_perf);
FIFOReset();
return false;
}
const uint8_t fifo_count_samples = fifo_count_bytes / sizeof(FIFO::DATA);
if (fifo_count_samples == 0) {
perf_count(_fifo_empty_perf);
return false;
}
// check FIFO header in every sample
uint8_t valid_samples = 0;
for (int i = 0; i < math::min(samples, fifo_count_samples); i++) {
bool valid = true;
// With FIFO_ACCEL_EN and FIFO_GYRO_EN header should be 8’b_0110_10xx
const uint8_t FIFO_HEADER = buffer.f[i].FIFO_Header;
if (FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_MSG) {
// FIFO sample empty if HEADER_MSG set
valid = false;
} else if (!(FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_ACCEL)) {
// accel bit not set
valid = false;
} else if (!(FIFO_HEADER & FIFO::FIFO_HEADER_BIT::HEADER_GYRO)) {
// gyro bit not set
valid = false;
}
if (valid) {
valid_samples++;
} else {
perf_count(_bad_transfer_perf);
break;
}
}
// PX4_WARN("valid_samples = %d ",valid_samples);
if (valid_samples > 0) {
ProcessGyro(timestamp_sample, buffer.f, valid_samples);
ProcessAccel(timestamp_sample, buffer.f, valid_samples);
return true;
}
return false;
}
void ICM42670P::FIFOReset()
{
perf_count(_fifo_reset_perf);
// SIGNAL_PATH_RESET: FIFO flush
RegisterSetBits(Register::BANK_0::SIGNAL_PATH_RESET, SIGNAL_PATH_RESET_BIT::FIFO_FLUSH);
// reset while FIFO is disabled
_drdy_fifo_read_samples.store(0);
}
void ICM42670P::ProcessAccel(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples)
{
sensor_accel_fifo_s accel{};
accel.timestamp_sample = timestamp_sample;
accel.samples = 0;
accel.dt = FIFO_SAMPLE_DT;
for (int i = 0; i < samples; i++) {
int16_t accel_x = combine(fifo[i].ACCEL_DATA_X1, fifo[i].ACCEL_DATA_X0);
int16_t accel_y = combine(fifo[i].ACCEL_DATA_Y1, fifo[i].ACCEL_DATA_Y0);
int16_t accel_z = combine(fifo[i].ACCEL_DATA_Z1, fifo[i].ACCEL_DATA_Z0);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
accel.x[accel.samples] = accel_x;
accel.y[accel.samples] = (accel_y == INT16_MIN) ? INT16_MAX : -accel_y;
accel.z[accel.samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
accel.samples++;
}
_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
if (accel.samples > 0) {
_px4_accel.updateFIFO(accel);
}
}
void ICM42670P::ProcessGyro(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples)
{
sensor_gyro_fifo_s gyro{};
gyro.timestamp_sample = timestamp_sample;
gyro.samples = samples;
gyro.dt = FIFO_SAMPLE_DT;
for (int i = 0; i < samples; i++) {
const int16_t gyro_x = combine(fifo[i].GYRO_DATA_X1, fifo[i].GYRO_DATA_X0);
const int16_t gyro_y = combine(fifo[i].GYRO_DATA_Y1, fifo[i].GYRO_DATA_Y0);
const int16_t gyro_z = combine(fifo[i].GYRO_DATA_Z1, fifo[i].GYRO_DATA_Z0);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
gyro.x[i] = gyro_x;
gyro.y[i] = (gyro_y == INT16_MIN) ? INT16_MAX : -gyro_y;
gyro.z[i] = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
}
_px4_gyro.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
_px4_gyro.updateFIFO(gyro);
}
void ICM42670P::UpdateTemperature()
{
// read current temperature
uint8_t temperature_buf[3] {};
temperature_buf[0] = static_cast<uint8_t>(Register::BANK_0::TEMP_DATA1) | DIR_READ;
if (transfer(temperature_buf, temperature_buf, sizeof(temperature_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return;
}
const int16_t TEMP_DATA = combine(temperature_buf[1], temperature_buf[2]);
// Temperature in Degrees Centigrade
const float TEMP_degC = (TEMP_DATA / TEMPERATURE_SENSITIVITY) + TEMPERATURE_OFFSET;
if (PX4_ISFINITE(TEMP_degC)) {
_px4_accel.set_temperature(TEMP_degC);
_px4_gyro.set_temperature(TEMP_degC);
}
}
uint8_t ICM42670P::RegisterReadBank1(uint8_t reg)
{
uint8_t value;
RegisterWrite((uint8_t)Register::BANK_0::BLK_SEL_R, 0x00);
RegisterWrite((uint8_t)Register::BANK_0::MADDR_R, reg);
ScheduleDelayed(10_us);
value = RegisterRead((uint8_t)Register::BANK_0::M_R);
ScheduleDelayed(10_us);
RegisterWrite((uint8_t)Register::BANK_0::BLK_SEL_R, 0x00);
return value;
}
void ICM42670P::RegisterWriteBank1(uint8_t reg, uint8_t value)
{
RegisterWrite((uint8_t)Register::BANK_0::BLK_SEL_W, 0x00);
RegisterWrite((uint8_t)Register::BANK_0::MADDR_W, reg);
RegisterWrite((uint8_t)Register::BANK_0::M_W, value);
ScheduleDelayed(10_us);
RegisterWrite((uint8_t)Register::BANK_0::BLK_SEL_W, 0x00);
}
void ICM42670P::Mreg1Config()
{
uint8_t data;
uint8_t set_bits;
uint8_t clear_bits;
clear_bits = Bit7 | Bit6 | Bit4 | Bit3;
set_bits = FIFO_CONFIG5_BIT::FIFO_WM_GT_TH | FIFO_CONFIG5_BIT::FIFO_TMST_FSYNC_EN | FIFO_CONFIG5_BIT::FIFO_GYRO_EN |
FIFO_CONFIG5_BIT::FIFO_ACCEL_EN;
data = RegisterReadBank1(0x01);
data &= ~clear_bits;
data |= set_bits;
RegisterWriteBank1(0x01, data);
clear_bits = Bit7 | Bit6 | Bit5 | Bit4 | Bit2 | Bit1 | Bit0;
set_bits = INT_CONFIG0_BIT::CLEAR_ON_FIFO_READ;
data = RegisterReadBank1(0x04);
data &= ~clear_bits;
data |= set_bits;
RegisterWriteBank1(0x04, data);
}
bool ICM42670P::Mreg1Check()
{
uint8_t set_bits;
uint8_t clear_bits;
uint8_t reg_value;
bool success;
success = true;
reg_value = RegisterReadBank1(0x01);
clear_bits = Bit7 | Bit6 | Bit4 | Bit3;
set_bits = FIFO_CONFIG5_BIT::FIFO_WM_GT_TH | FIFO_CONFIG5_BIT::FIFO_TMST_FSYNC_EN | FIFO_CONFIG5_BIT::FIFO_GYRO_EN |
FIFO_CONFIG5_BIT::FIFO_ACCEL_EN;
if (set_bits && ((reg_value & set_bits) != set_bits)) {
success = false;
}
if (clear_bits && ((reg_value & clear_bits) != 0)) {
success = false;
}
reg_value = RegisterReadBank1(0x04);
clear_bits = Bit7 | Bit6 | Bit5 | Bit4 | Bit2 | Bit1 | Bit0;
set_bits = INT_CONFIG0_BIT::CLEAR_ON_FIFO_READ;
if (set_bits && ((reg_value & set_bits) != set_bits)) {
success = false;
}
if (clear_bits && ((reg_value & clear_bits) != 0)) {
success = false;
}
return success;
}

184
src/drivers/imu/invensense/icm42670p/ICM42670P.hpp

@ -0,0 +1,184 @@ @@ -0,0 +1,184 @@
/****************************************************************************
*
* Copyright (c) 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ICM42688P.hpp
*
* Driver for the Invensense ICM42688P connected via SPI.
*
*/
#pragma once
#include "InvenSense_ICM42670P_registers.hpp"
#include <drivers/drv_hrt.h>
#include <lib/drivers/accelerometer/PX4Accelerometer.hpp>
#include <lib/drivers/device/spi.h>
#include <lib/drivers/gyroscope/PX4Gyroscope.hpp>
#include <lib/perf/perf_counter.h>
#include <px4_platform_common/atomic.h>
#include <px4_platform_common/i2c_spi_buses.h>
using namespace InvenSense_ICM42670P;
class ICM42670P : public device::SPI, public I2CSPIDriver<ICM42670P>
{
public:
ICM42670P(const I2CSPIDriverConfig &config);
~ICM42670P() override;
static void print_usage();
void RunImpl();
int init() override;
void print_status() override;
private:
void exit_and_cleanup() override;
// Sensor Configuration
static constexpr float FIFO_SAMPLE_DT{1e6f / 800.f}; // 8000 Hz accel & gyro ODR configured
static constexpr float GYRO_RATE{1e6f / FIFO_SAMPLE_DT};
static constexpr float ACCEL_RATE{1e6f / FIFO_SAMPLE_DT};
// maximum FIFO samples per transfer is limited to the size of sensor_accel_fifo/sensor_gyro_fifo
static constexpr uint32_t FIFO_MAX_SAMPLES{math::min(math::min(FIFO::SIZE / sizeof(FIFO::DATA), sizeof(sensor_gyro_fifo_s::x) / sizeof(sensor_gyro_fifo_s::x[0])), sizeof(sensor_accel_fifo_s::x) / sizeof(sensor_accel_fifo_s::x[0]) * (int)(GYRO_RATE / ACCEL_RATE))};
// Transfer data
struct FIFOTransferBuffer {
uint8_t cmd{static_cast<uint8_t>(Register::BANK_0::INT_STATUS) | DIR_READ};
uint8_t INT_STATUS{0};
uint8_t INT_STATUS2{0};
uint8_t INT_STATUS3{0};
uint8_t FIFO_COUNTH{0};
uint8_t FIFO_COUNTL{0};
FIFO::DATA f[FIFO_MAX_SAMPLES] {};
};
// ensure no struct padding
static_assert(sizeof(FIFOTransferBuffer) == (4 + 2 + FIFO_MAX_SAMPLES *sizeof(FIFO::DATA)));
struct register_bank0_config_t {
Register::BANK_0 reg;
uint8_t set_bits{0};
uint8_t clear_bits{0};
};
int probe() override;
bool Reset();
bool Configure();
void ConfigureAccel();
void ConfigureGyro();
void ConfigureSampleRate(int sample_rate);
void ConfigureFIFOWatermark(uint8_t samples);
static int DataReadyInterruptCallback(int irq, void *context, void *arg);
void DataReady();
bool DataReadyInterruptConfigure();
bool DataReadyInterruptDisable();
template <typename T> bool RegisterCheck(const T &reg_cfg);
template <typename T> uint8_t RegisterRead(T reg);
template <typename T> void RegisterWrite(T reg, uint8_t value);
template <typename T> void RegisterSetAndClearBits(T reg, uint8_t setbits, uint8_t clearbits);
template <typename T> void RegisterSetBits(T reg, uint8_t setbits) { RegisterSetAndClearBits(reg, setbits, 0); }
template <typename T> void RegisterClearBits(T reg, uint8_t clearbits) { RegisterSetAndClearBits(reg, 0, clearbits); }
uint16_t FIFOReadCount();
bool FIFORead(const hrt_abstime &timestamp_sample, uint8_t samples);
void FIFOReset();
void ProcessAccel(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples);
void ProcessGyro(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples);
void UpdateTemperature();
uint8_t RegisterReadBank1(uint8_t reg);
void RegisterWriteBank1(uint8_t reg, uint8_t value);
void Mreg1Config();
bool Mreg1Check();
const spi_drdy_gpio_t _drdy_gpio;
PX4Accelerometer _px4_accel;
PX4Gyroscope _px4_gyro;
perf_counter_t _bad_register_perf{perf_alloc(PC_COUNT, MODULE_NAME": bad register")};
perf_counter_t _bad_transfer_perf{perf_alloc(PC_COUNT, MODULE_NAME": bad transfer")};
perf_counter_t _fifo_empty_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO empty")};
perf_counter_t _fifo_overflow_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO overflow")};
perf_counter_t _fifo_reset_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO reset")};
perf_counter_t _drdy_missed_perf{nullptr};
hrt_abstime _reset_timestamp{0};
hrt_abstime _last_config_check_timestamp{0};
hrt_abstime _temperature_update_timestamp{0};
int _failure_count{0};
enum REG_BANK_SEL_BIT _last_register_bank {REG_BANK_SEL_BIT::USER_BANK_0};
px4::atomic<uint32_t> _drdy_fifo_read_samples{0};
bool _data_ready_interrupt_enabled{false};
enum class STATE : uint8_t {
RESET,
WAIT_FOR_RESET,
CONFIGURE,
FIFO_READ,
};
STATE _state{STATE::RESET};
uint16_t _fifo_empty_interval_us{1250}; // default 1250 us / 800 Hz transfer interval
uint32_t _fifo_gyro_samples{static_cast<uint32_t>(_fifo_empty_interval_us / (1000000 / GYRO_RATE))};
uint8_t _checked_register_bank0{0};
static constexpr uint8_t size_register_bank0_cfg{10};
register_bank0_config_t _register_bank0_cfg[size_register_bank0_cfg] {
// Register | Set bits, Clear bits
{ Register::BANK_0::INT_CONFIG, INT_CONFIG_BIT::INT1_MODE | INT_CONFIG_BIT::INT1_DRIVE_CIRCUIT, INT_CONFIG_BIT::INT1_POLARITY },
{ Register::BANK_0::FIFO_CONFIG1, FIFO_CONFIG1_BIT::FIFO_MODE_STOP_ON_FULL, Bit0 },
{ Register::BANK_0::PWR_MGMT0, PWR_MGMT0_BIT::GYRO_MODE_LOW_NOISE | PWR_MGMT0_BIT::ACCEL_MODE_LOW_NOISE, 0 },
{ Register::BANK_0::GYRO_CONFIG0, GYRO_CONFIG0_BIT::GYRO_ODR_1600Hz | GYRO_CONFIG0_BIT::GYRO_FS_SEL_2000_DPS, Bit7 | Bit3 | Bit0 },
{ Register::BANK_0::ACCEL_CONFIG0, ACCEL_CONFIG0_BIT::ACCEL_ODR_1600Hz | ACCEL_CONFIG0_BIT::ACCEL_FS_SEL_16G, Bit6 | Bit5 | Bit3 | Bit0 },
{ Register::BANK_0::GYRO_CONFIG1, GYRO_CONFIG1_BIT::GYRO_UI_FILT_BW_34Hz, Bit1 },
{ Register::BANK_0::ACCEL_CONFIG1, ACCEL_CONFIG1_BIT::ACCEL_UI_FILT_BW_34Hz, Bit1 },
{ Register::BANK_0::FIFO_CONFIG2, 0, 0 }, // FIFO_WM[7:0] set at runtime
{ Register::BANK_0::FIFO_CONFIG3, 0, 0 }, // FIFO_WM[11:8] set at runtime
{ Register::BANK_0::INT_SOURCE0, INT_SOURCE0_BIT::FIFO_THS_INT1_EN, 0 },
};
};

293
src/drivers/imu/invensense/icm42670p/InvenSense_ICM42670P_registers.hpp

@ -0,0 +1,293 @@ @@ -0,0 +1,293 @@
/****************************************************************************
*
* Copyright (c) 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file InvenSense_ICM42670P_registers.hpp
*
* Invensense ICM-42670-P registers.
*
*/
#pragma once
#include <cstdint>
namespace InvenSense_ICM42670P
{
// TODO: move to a central header
static constexpr uint8_t Bit0 = (1 << 0);
static constexpr uint8_t Bit1 = (1 << 1);
static constexpr uint8_t Bit2 = (1 << 2);
static constexpr uint8_t Bit3 = (1 << 3);
static constexpr uint8_t Bit4 = (1 << 4);
static constexpr uint8_t Bit5 = (1 << 5);
static constexpr uint8_t Bit6 = (1 << 6);
static constexpr uint8_t Bit7 = (1 << 7);
static constexpr uint32_t SPI_SPEED = 12 * 1000 * 1000; // 24 MHz SPI
static constexpr uint8_t DIR_READ = 0x80;
static constexpr uint8_t WHOAMI = 0x67;
static constexpr float TEMPERATURE_SENSITIVITY = 128.0f; // LSB/C
static constexpr float TEMPERATURE_OFFSET = 25.f; // C
namespace Register
{
enum class BANK_0 : uint8_t {
DEVICE_CONFIG = 0x01,
INT_CONFIG = 0x06,
TEMP_DATA1 = 0x09,
TEMP_DATA0 = 0x0A,
INT_STATUS = 0x3A,
FIFO_COUNTH = 0x3D,
FIFO_COUNTL = 0x3E,
FIFO_DATA = 0x3F,
SIGNAL_PATH_RESET = 0x02,
PWR_MGMT0 = 0x1F,
GYRO_CONFIG0 = 0x20,
ACCEL_CONFIG0 = 0x21,
GYRO_CONFIG1 = 0x23,
ACCEL_CONFIG1 = 0x24,
FIFO_CONFIG1 = 0x28,
FIFO_CONFIG2 = 0x29,
FIFO_CONFIG3 = 0x2A,
INT_SOURCE0 = 0x2B,
WHO_AM_I = 0x75,
// REG_BANK_SEL = 0x76,
BLK_SEL_W = 0x79,
MADDR_W = 0x7A,
M_W = 0x7B,
BLK_SEL_R = 0x7C,
MADDR_R = 0x7D,
M_R = 0x7E,
};
enum class MREG_1 : uint8_t {
FIFO_CONFIG5_MREG1 = 0x01,
INT_CONFIG0_MREG1 = 0x04,
};
enum class MREG_2 : uint8_t {
OTP_CTRL7_MREG2 = 0x06,
};
enum class MREG_3 : uint8_t {
XA_ST_DATA_MREG3 = 0x00,
YA_ST_DATA_MREG3 = 0x01,
ZA_ST_DATA_MREG3 = 0x02,
XG_ST_DATA_MREG3 = 0x03,
YG_ST_DATA_MREG3 = 0x04,
ZG_ST_DATA_MREG3 = 0x05,
};
};
//---------------- BANK0 Register bits
// SIGNAL_PATH_RESET
enum SIGNAL_PATH_RESET_BIT : uint8_t {
SOFT_RESET_DEVICE_CONFIG = Bit4, //
FIFO_FLUSH = Bit2,
};
// INT_CONFIG
enum INT_CONFIG_BIT : uint8_t {
INT1_MODE = Bit2,
INT1_DRIVE_CIRCUIT = Bit1,
INT1_POLARITY = Bit0,
};
// GYRO_CONFIG1
enum GYRO_CONFIG1_BIT : uint8_t {
// 2:0 GYRO_ODR
GYRO_UI_FILT_BW_16Hz = Bit2 | Bit1 | Bit0, // 111: 16Hz
GYRO_UI_FILT_BW_25Hz = Bit2 | Bit1, // 110: 25Hz
GYRO_UI_FILT_BW_34Hz = Bit2 | Bit0, // 101: 34Hz
GYRO_UI_FILT_BW_53Hz = Bit2, // 100: 53Hz
GYRO_UI_FILT_BW_73Hz = Bit1 | Bit0, // 011: 73Hz
GYRO_UI_FILT_BW_121Hz = Bit1, // 010: 121Hz
GYRO_UI_FILT_BW_180Hz = Bit0, // 001: 180Hz
};
// ACCEL_CONFIG1
enum ACCEL_CONFIG1_BIT : uint8_t {
// 2:0 ACCEL_ODR
ACCEL_UI_FILT_BW_16Hz = Bit2 | Bit1 | Bit0, // 111: 16Hz
ACCEL_UI_FILT_BW_25Hz = Bit2 | Bit1, // 110: 25Hz
ACCEL_UI_FILT_BW_34Hz = Bit2 | Bit0, // 101: 34Hz
ACCEL_UI_FILT_BW_53Hz = Bit2, // 100: 53Hz
ACCEL_UI_FILT_BW_73Hz = Bit1 | Bit0, // 011: 73Hz
ACCEL_UI_FILT_BW_121Hz = Bit1, // 010: 121Hz
ACCEL_UI_FILT_BW_180Hz = Bit0, // 001: 180Hz
};
// FIFO_CONFIG1
enum FIFO_CONFIG1_BIT : uint8_t {
// 1 FIFO_MODE
FIFO_MODE_STOP_ON_FULL = Bit1, // 11: STOP-on-FULL Mode
};
// INT_STATUS
enum INT_STATUS_BIT : uint8_t {
RESET_DONE_INT = Bit4,
FIFO_THS_INT = Bit2,
FIFO_FULL_INT = Bit1,
};
// PWR_MGMT0
enum PWR_MGMT0_BIT : uint8_t {
GYRO_MODE_LOW_NOISE = Bit3 | Bit2, // 11: Places gyroscope in Low Noise (LN) Mode
ACCEL_MODE_LOW_NOISE = Bit1 | Bit0, // 11: Places accelerometer in Low Noise (LN) Mode
};
// GYRO_CONFIG0
enum GYRO_CONFIG0_BIT : uint8_t {
// 6:5 GYRO_FS_SEL
GYRO_FS_SEL_2000_DPS = 0, // 0b000 = ±2000dps
GYRO_FS_SEL_1000_DPS = Bit5, // 0b001 = ±1000 dps
GYRO_FS_SEL_500_DPS = Bit6, // 0b010 = ±500 dps
GYRO_FS_SEL_250_DPS = Bit6 | Bit5, // 0b011 = ±250 dps
// 3:0 GYRO_ODR
GYRO_ODR_1600Hz = Bit2 | Bit0, // 0101: 1600Hz
GYRO_ODR_800Hz = Bit2 | Bit1, // 0110: 800Hz
GYRO_ODR_400Hz = Bit2 | Bit1 | Bit0, // 0111: 400Hz
GYRO_ODR_200Hz = Bit3, // 1000: 200Hz
};
// ACCEL_CONFIG0
enum ACCEL_CONFIG0_BIT : uint8_t {
// 6:5 ACCEL_FS_SEL
ACCEL_FS_SEL_16G = 0, // 000: ±16g
ACCEL_FS_SEL_8G = Bit5, // 001: ±8g
ACCEL_FS_SEL_4G = Bit6, // 010: ±4g
ACCEL_FS_SEL_2G = Bit6 | Bit5, // 011: ±2g
// 3:0 ACCEL_ODR
ACCEL_ODR_1600Hz = Bit2 | Bit0, // 0101: 1600Hz
ACCEL_ODR_800Hz = Bit2 | Bit1, // 0110: 800Hz
ACCEL_ODR_400Hz = Bit2 | Bit1 | Bit0, // 0111: 400Hz
ACCEL_ODR_200Hz = Bit3, // 1000: 200Hz
};
// FIFO_CONFIG5
enum FIFO_CONFIG5_BIT : uint8_t {
FIFO_RESUME_PARTIAL_RD = Bit4,
FIFO_WM_GT_TH = Bit5,
FIFO_HIRES_EN = Bit3,
FIFO_TMST_FSYNC_EN = Bit2,
FIFO_GYRO_EN = Bit1,
FIFO_ACCEL_EN = Bit0,
};
// INT_CONFIG0
enum INT_CONFIG0_BIT : uint8_t {
// 3:2 FIFO_THS_INT_CLEAR
CLEAR_ON_FIFO_READ = Bit3,
};
// INT_SOURCE0
enum INT_SOURCE0_BIT : uint8_t {
ST_INT1_END = Bit7,
FSYNC_INT1_EN = Bit6,
PLL_RDY_INT1_EN = Bit5,
RESET_DONE_INT1_EN = Bit4,
DRDY_INT1_EN = Bit3,
FIFO_THS_INT1_EN = Bit2, // FIFO threshold interrupt routed to INT1
FIFO_FULL_INT1_EN = Bit1,
AGC_RDY_INT1_EN = Bit0,
};
// REG_BANK_SEL
enum REG_BANK_SEL_BIT : uint8_t {
USER_BANK_0 = 0, // 0: Select USER BANK 0.
USER_BANK_1 = Bit4, // 1: Select USER BANK 1.
USER_BANK_2 = Bit5, // 2: Select USER BANK 2.
USER_BANK_3 = Bit5 | Bit4, // 3: Select USER BANK 3.
};
namespace FIFO
{
static constexpr size_t SIZE = 2048;
// FIFO_DATA layout when FIFO_CONFIG1 has FIFO_GYRO_EN and FIFO_ACCEL_EN set
// Packet 3
struct DATA {
uint8_t FIFO_Header;
uint8_t ACCEL_DATA_X1;
uint8_t ACCEL_DATA_X0;
uint8_t ACCEL_DATA_Y1;
uint8_t ACCEL_DATA_Y0;
uint8_t ACCEL_DATA_Z1;
uint8_t ACCEL_DATA_Z0;
uint8_t GYRO_DATA_X1;
uint8_t GYRO_DATA_X0;
uint8_t GYRO_DATA_Y1;
uint8_t GYRO_DATA_Y0;
uint8_t GYRO_DATA_Z1;
uint8_t GYRO_DATA_Z0;
uint8_t temperature; // Temperature[7:0]
uint8_t timestamp_l;
uint8_t timestamp_h;
};
// With FIFO_ACCEL_EN and FIFO_GYRO_EN header should be 8’b_0110_10xx
enum FIFO_HEADER_BIT : uint8_t {
HEADER_MSG = Bit7, // 1: FIFO is empty
HEADER_ACCEL = Bit6,
HEADER_GYRO = Bit5,
HEADER_20 = Bit4,
HEADER_TIMESTAMP_FSYNC = Bit3 | Bit2,
HEADER_ODR_ACCEL = Bit1,
HEADER_ODR_GYRO = Bit0,
};
}
} // namespace InvenSense_ICM42670P

89
src/drivers/imu/invensense/icm42670p/icm42670p_main.cpp

@ -0,0 +1,89 @@ @@ -0,0 +1,89 @@
/****************************************************************************
*
* Copyright (c) 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM42670P.hpp"
#include <px4_platform_common/getopt.h>
#include <px4_platform_common/module.h>
void ICM42670P::print_usage()
{
PRINT_MODULE_USAGE_NAME("icm42670p", "driver");
PRINT_MODULE_USAGE_SUBCATEGORY("imu");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_PARAMS_I2C_SPI_DRIVER(false, true);
PRINT_MODULE_USAGE_PARAM_INT('R', 0, 0, 35, "Rotation", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
}
extern "C" int icm42670p_main(int argc, char *argv[])
{
int ch;
using ThisDriver = ICM42670P;
BusCLIArguments cli{false, true};
cli.default_spi_frequency = SPI_SPEED;
while ((ch = cli.getOpt(argc, argv, "R:")) != EOF) {
switch (ch) {
case 'R':
cli.rotation = (enum Rotation)atoi(cli.optArg());
break;
}
}
const char *verb = cli.optArg();
if (!verb) {
ThisDriver::print_usage();
return -1;
}
BusInstanceIterator iterator(MODULE_NAME, cli, DRV_IMU_DEVTYPE_ICM42670P);
if (!strcmp(verb, "start")) {
return ThisDriver::module_start(cli, iterator);
}
if (!strcmp(verb, "stop")) {
return ThisDriver::module_stop(iterator);
}
if (!strcmp(verb, "status")) {
return ThisDriver::module_status(iterator);
}
ThisDriver::print_usage();
return -1;
}
Loading…
Cancel
Save