|
|
|
@ -794,3 +794,35 @@ void Ekf::resetMagCovariance()
@@ -794,3 +794,35 @@ void Ekf::resetMagCovariance()
|
|
|
|
|
P[rc_index][rc_index] = sq(_params.mag_noise); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void Ekf::resetWindCovariance() |
|
|
|
|
{ |
|
|
|
|
// set the wind covariance terms to zero
|
|
|
|
|
zeroRows(P,22,23); |
|
|
|
|
zeroCols(P,22,23); |
|
|
|
|
|
|
|
|
|
// calculate the wind speed and bearing
|
|
|
|
|
float spd = sqrtf(sq(_state.wind_vel(0))+sq(_state.wind_vel(1))); |
|
|
|
|
float yaw = atan2f(_state.wind_vel(1),_state.wind_vel(0)); |
|
|
|
|
|
|
|
|
|
// calculate the uncertainty in wind speed and direction using the uncertainty in airspeed and sideslip angle
|
|
|
|
|
// used to calculate the initial wind speed
|
|
|
|
|
float R_spd = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) * math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f)); |
|
|
|
|
float R_yaw = sq(0.1745f); |
|
|
|
|
|
|
|
|
|
// calculate the variance and covariance terms for the wind states
|
|
|
|
|
float cos_yaw = cosf(yaw); |
|
|
|
|
float sin_yaw = sinf(yaw); |
|
|
|
|
float cos_yaw_2 = sq(cos_yaw); |
|
|
|
|
float sin_yaw_2 = sq(sin_yaw); |
|
|
|
|
float sin_cos_yaw = sin_yaw*cos_yaw; |
|
|
|
|
float spd_2 = sq(spd); |
|
|
|
|
P[22][22] = R_yaw*spd_2*sin_yaw_2 + R_spd*cos_yaw_2; |
|
|
|
|
P[22][23] = - R_yaw*sin_cos_yaw*spd_2 + R_spd*sin_cos_yaw; |
|
|
|
|
P[23][22] = P[22][23]; |
|
|
|
|
P[23][23] = R_yaw*spd_2*cos_yaw_2 + R_spd*sin_yaw_2; |
|
|
|
|
|
|
|
|
|
// Now add the variance due to uncertainty in vehicle velocity that was used to calculate the initial wind speed
|
|
|
|
|
P[22][22] += P[4][4]; |
|
|
|
|
P[23][23] += P[5][5]; |
|
|
|
|
} |
|
|
|
|