Browse Source

mc_pos_control: add clarification to auto function and auto angle computation

sbg
Dennis Mannhart 8 years ago committed by Lorenz Meier
parent
commit
6e5fe947fe
  1. 77
      src/modules/mc_pos_control/mc_pos_control_main.cpp

77
src/modules/mc_pos_control/mc_pos_control_main.cpp

@ -1434,11 +1434,18 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1434,11 +1434,18 @@ void MulticopterPositionControl::control_auto(float dt)
/* by default use current setpoint as is */
math::Vector<3> pos_sp = _curr_pos_sp;
/* line from previous to current */
/* line from previous to current and from pos to current */
matrix::Vector2f unit_prev_to_current((_curr_pos_sp(0) - _prev_pos_sp(0)), (_curr_pos_sp(1) - _prev_pos_sp(1)));
matrix::Vector2f vec_pos_to_current((_curr_pos_sp(0) - _pos(0)), (_curr_pos_sp(1) - _pos(1)));
float min_dist_to_current = 0.5f;
/* check if we just want to stay at current position */
bool stay_at_current_pos = (vec_pos_to_current.length() < min_dist_to_current) &&
(_pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_LOITER || !next_setpoint_valid);
/* only follow line if previous to current has a minimum distance */
if (unit_prev_to_current.length() > 0.1f) {
if (unit_prev_to_current.length() > 0.1f && !stay_at_current_pos) {
/* normalize prev-current line (always > 0.1) */
unit_prev_to_current = unit_prev_to_current.normalized();
@ -1448,10 +1455,9 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1448,10 +1455,9 @@ void MulticopterPositionControl::control_auto(float dt)
(matrix::Vector2f((_pos(0) - _prev_pos_sp(0)), (_pos(1) - _prev_pos_sp(1))) * unit_prev_to_current);
/* compute vector from position-current and previous-position */
matrix::Vector2f vec_pos_to_current((_curr_pos_sp(0) - _pos(0)), (_curr_pos_sp(1) - _pos(1)));
matrix::Vector2f vec_prev_to_pos((_pos(0) - _prev_pos_sp(0)), (_pos(1) - _prev_pos_sp(1)));
/* indicates if we are at least half the distance from previos to current close to previous */
/* indicates if we are at least half the distance from previous to current close to previous */
bool close_to_prev = ((_curr_pos_sp - _prev_pos_sp).length() * 0.5f) > vec_prev_to_pos.length();
/* check if the current setpoint is behind */
@ -1464,17 +1470,22 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1464,17 +1470,22 @@ void MulticopterPositionControl::control_auto(float dt)
float vel_sp_along_track = get_cruising_speed_xy();
/* compute velocity setpoint along track */
if (previous_in_front || current_behind) {
if (previous_in_front) {
/* just use the default velocity along track */
} else if (current_behind) {
vel_sp_along_track = vec_pos_to_current.length() * _params.pos_p(0);
vel_sp_along_track = (vel_sp_along_track < get_cruising_speed_xy()) ? vel_sp_along_track : get_cruising_speed_xy();
} else if ((vec_prev_to_pos.length() < _target_threshold_xy.get()) && close_to_prev) {
/* accelerate from previous setpoint towards current setpoint */
/* the minimum cruise speed is the current velocity: this ensures that we do not slow down when moving towards current setpoint */
float min_cruise_speed = sqrtf(_vel(0) * _vel(0) + _vel(1) * _vel(1));
/* we don't want to get stucked with zero velociyt setpoint: enforce a min cruise speed */
/* we don't want to get stucked with zero velocity setpoint: enforce a min cruise speed */
min_cruise_speed = (min_cruise_speed > _min_cruise_speed.get()) ? min_cruise_speed : _min_cruise_speed.get();
/* make sure min cruise speed is smaller as maximum cruise speed */
@ -1482,7 +1493,7 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1482,7 +1493,7 @@ void MulticopterPositionControl::control_auto(float dt)
/* compute the velocity along the track depending on distance close to previous setpoint*/
float slope = (get_cruising_speed_xy() - min_cruise_speed) / _target_threshold_xy.get();
vel_sp_along_track = slope * vec_prev_to_pos.length() + min_cruise_speed;
vel_sp_along_track = slope * (vec_prev_to_pos.length() - min_dist_to_current) + min_cruise_speed;
} else if (vec_pos_to_current.length() < _target_threshold_xy.get()) {
/* slow down when close to current setpoint */
@ -1495,7 +1506,8 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1495,7 +1506,8 @@ void MulticopterPositionControl::control_auto(float dt)
unit_current_to_next = (unit_current_to_next.length() > 0.01f) ? unit_current_to_next.normalized() :
unit_current_to_next;
/* angle goes from 0 to 2 with 0 being large angle, 2 being small angle: 0 = PI ; 2 = PI*0 */
/* angle = cos(x) + 1.0
* angle goes from 0 to 2 with 0 = large angle, 2 = small angle: 0 = PI ; 2 = PI*0 */
float angle = 2.0f;
if (unit_current_to_next.length() > 0.01f) {
@ -1506,29 +1518,44 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1506,29 +1518,44 @@ void MulticopterPositionControl::control_auto(float dt)
* vel_close = a *b ^x + c; where at angle = 0 -> vel_close = vel_cruise; angle = 1 -> vel_cruise/4.0 (this means that at 90degrees
* the velocity at target should be 1/5 * cruising speed;
* angle = 2 -> vel_close = min_cruising_speed */
float M = get_cruising_speed_xy() / 5.0f;
float a = -((M - get_cruising_speed_xy()) * (M - get_cruising_speed_xy())) / (2.0f * M - get_cruising_speed_xy() -
_min_cruise_speed.get());
/* middle cruise speed is a number between maximum cruising speed and minimum cruising speed and corresponds to speed at angle = 1.0 */
float middle_cruise_speed = get_cruising_speed_xy() / 5.0f;
/* make sure min cruise speed is always smaller than M */
float min_cruise_speed = (_min_cruise_speed.get() < middle_cruise_speed) ? _min_cruise_speed.get() : middle_cruise_speed
- 0.01f;
/* from maximum cruise speed, minimum cruise speed and middle cruise speed compute constants a, b and c */
float a = -((middle_cruise_speed - get_cruising_speed_xy()) * (middle_cruise_speed - get_cruising_speed_xy())) /
(2.0f * middle_cruise_speed - get_cruising_speed_xy() - min_cruise_speed);
float c = get_cruising_speed_xy() - a;
float b = (M - c) / a;
float b = (middle_cruise_speed - c) / a;
float vel_close = a * powf(b, angle) + c;
/* insanity check */
vel_close = (vel_close < get_cruising_speed_xy()) ? vel_close : get_cruising_speed_xy();
vel_close = fabsf(vel_close);
/* sanity check: vel_close needs to be in between max and min */
vel_close = (PX4_ISFINITE(vel_close)) ? vel_close : _min_cruise_speed.get();
if (!(vel_close >= min_cruise_speed) && !(vel_close <= get_cruising_speed_xy())) {
vel_close = min_cruise_speed;
}
/* compute velocity along line dependent on distance to current setpoint */
float slope = (get_cruising_speed_xy() - vel_close) / _target_threshold_xy.get();
vel_sp_along_track = slope * vec_pos_to_current.length() + vel_close;
vel_sp_along_track = slope * (vec_pos_to_current.length() - min_dist_to_current) + vel_close;
} else {
/* we want to stop at current setpoint */
float slope = (get_cruising_speed_xy() - _min_cruise_speed.get()) / _target_threshold_xy.get();
vel_sp_along_track = slope * vec_pos_to_current.length() + _min_cruise_speed.get();
vel_sp_along_track = vec_pos_to_current.length() * _params.pos_p(0);
if (vec_pos_to_current.length() > 0.5f) {
float slope = (get_cruising_speed_xy() - _min_cruise_speed.get()) / _target_threshold_xy.get();
vel_sp_along_track = slope * (vec_pos_to_current.length() - min_dist_to_current) + _min_cruise_speed.get();
}
}
}
/*compute velocity orthogonal to prev-current-line to position*/
matrix::Vector2f vec_pos_to_closest = closest_point - matrix::Vector2f(_pos(0), _pos(1));
float vel_sp_orthogonal = vec_pos_to_closest.length() * _params.pos_p(0);
@ -1536,10 +1563,10 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1536,10 +1563,10 @@ void MulticopterPositionControl::control_auto(float dt)
/* compute the cruise speed from velocity along line and orthogonal velocity setpoint */
float cruise_sp_mag = sqrtf(vel_sp_orthogonal * vel_sp_orthogonal + vel_sp_along_track * vel_sp_along_track);
/* insanity check */
/* sanity check */
cruise_sp_mag = (PX4_ISFINITE(cruise_sp_mag)) ? cruise_sp_mag : vel_sp_orthogonal;
/* orthogonal velocity setpoint is smaller then cruise speed */
/* orthogonal velocity setpoint is smaller than cruise speed */
if (vel_sp_orthogonal < get_cruising_speed_xy() && !current_behind) {
/* we need to limit vel_sp_along_track such that cruise speed is never exceeded but still can keep velocity orthogonal to track */
@ -1553,7 +1580,7 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1553,7 +1580,7 @@ void MulticopterPositionControl::control_auto(float dt)
} else {
/* we are more than cruise_speed away from track or current is behind */
/* if previous is in front just directly to previous point */
/* if previous is in front just go directly to previous point */
if (previous_in_front) {
vec_pos_to_closest(0) = _prev_pos_sp(0) - _pos(0);
vec_pos_to_closest(1) = _prev_pos_sp(1) - _pos(1);
@ -1572,14 +1599,14 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1572,14 +1599,14 @@ void MulticopterPositionControl::control_auto(float dt)
cruise_sp = get_cruising_speed_xy();
}
/* if we close to closest point then just go to closest point */
/* if we close to closest point than just go to closest point */
if (vec_pos_to_closest.length() > 0.1f) {
pos_sp(0) = _pos(0) + vec_pos_to_closest(0) / vec_pos_to_closest.length() * cruise_sp / _params.pos_p(0);
pos_sp(1) = _pos(1) + vec_pos_to_closest(1) / vec_pos_to_closest.length() * cruise_sp / _params.pos_p(1);
} else {
pos_sp(0) = closest_point(0);
pos_sp(1) = closest_point(0);
pos_sp(1) = closest_point(1);
}
}
}
@ -1594,7 +1621,7 @@ void MulticopterPositionControl::control_auto(float dt) @@ -1594,7 +1621,7 @@ void MulticopterPositionControl::control_auto(float dt)
_vel_max_xy = get_cruising_speed_xy();
}
/* insanity check */
/* sanity check */
if (!(PX4_ISFINITE(_pos_sp(0)) && PX4_ISFINITE(_pos_sp(1)) &&
PX4_ISFINITE(_pos_sp(2)))) {

Loading…
Cancel
Save