Browse Source

Remove both versions of matrix / Matrix

master
Lorenz Meier 9 years ago
parent
commit
713aee154b
  1. 368
      matrix/Matrix.hpp
  2. 11
      matrix/matrix.hpp

368
matrix/Matrix.hpp

@ -1,368 +0,0 @@
/**
* @file Matrix.hpp
*
* A simple matrix template library.
*
* @author James Goppert <james.goppert@gmail.com>
*/
#pragma once
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "matrix.hpp"
namespace matrix
{
template <typename Type, size_t M>
class Vector;
template<typename Type, size_t M, size_t N>
class Matrix
{
public:
Type _data[M][N];
virtual ~Matrix() {};
Matrix() :
_data()
{
}
Matrix(const Type *data_) :
_data()
{
memcpy(_data, data_, sizeof(_data));
}
Matrix(const Matrix &other) :
_data()
{
memcpy(_data, other._data, sizeof(_data));
}
/**
* Accessors/ Assignment etc.
*/
Type *data()
{
return _data[0];
}
inline Type operator()(size_t i, size_t j) const
{
return _data[i][j];
}
inline Type &operator()(size_t i, size_t j)
{
return _data[i][j];
}
/**
* Matrix Operations
*/
// this might use a lot of programming memory
// since it instantiates a class for every
// required mult pair, but it provides
// compile time size_t checking
template<size_t P>
Matrix<Type, M, P> operator*(const Matrix<Type, N, P> &other) const
{
const Matrix<Type, M, N> &self = *this;
Matrix<Type, M, P> res;
res.setZero();
for (size_t i = 0; i < M; i++) {
for (size_t k = 0; k < P; k++) {
for (size_t j = 0; j < N; j++) {
res(i, k) += self(i, j) * other(j, k);
}
}
}
return res;
}
Matrix<Type, M, N> operator+(const Matrix<Type, M, N> &other) const
{
Matrix<Type, M, N> res;
const Matrix<Type, M, N> &self = *this;
for (size_t i = 0; i < M; i++) {
for (size_t j = 0; j < N; j++) {
res(i , j) = self(i, j) + other(i, j);
}
}
return res;
}
bool operator==(const Matrix<Type, M, N> &other) const
{
const Matrix<Type, M, N> &self = *this;
static const Type eps = Type(1e-6);
for (size_t i = 0; i < M; i++) {
for (size_t j = 0; j < N; j++) {
if (fabs(self(i , j) - other(i, j)) > eps) {
return false;
}
}
}
return true;
}
Matrix<Type, M, N> operator-(const Matrix<Type, M, N> &other) const
{
Matrix<Type, M, N> res;
const Matrix<Type, M, N> &self = *this;
for (size_t i = 0; i < M; i++) {
for (size_t j = 0; j < N; j++) {
res(i , j) = self(i, j) - other(i, j);
}
}
return res;
}
void operator+=(const Matrix<Type, M, N> &other)
{
Matrix<Type, M, N> &self = *this;
self = self + other;
}
void operator-=(const Matrix<Type, M, N> &other)
{
Matrix<Type, M, N> &self = *this;
self = self - other;
}
template<size_t P>
void operator*=(const Matrix<Type, N, P> &other)
{
Matrix<Type, M, N> &self = *this;
self = self * other;
}
/**
* Scalar Operations
*/
Matrix<Type, M, N> operator*(Type scalar) const
{
Matrix<Type, M, N> res;
const Matrix<Type, M, N> &self = *this;
for (size_t i = 0; i < M; i++) {
for (size_t j = 0; j < N; j++) {
res(i , j) = self(i, j) * scalar;
}
}
return res;
}
inline Matrix<Type, M, N> operator/(Type scalar) const
{
return (*this)*(1/scalar);
}
Matrix<Type, M, N> operator+(Type scalar) const
{
Matrix<Type, M, N> res;
const Matrix<Type, M, N> &self = *this;
for (size_t i = 0; i < M; i++) {
for (size_t j = 0; j < N; j++) {
res(i , j) = self(i, j) + scalar;
}
}
return res;
}
inline Matrix<Type, M, N> operator-(Type scalar) const
{
return (*this) + (-1*scalar);
}
void operator*=(Type scalar)
{
Matrix<Type, M, N> &self = *this;
for (size_t i = 0; i < M; i++) {
for (size_t j = 0; j < N; j++) {
self(i, j) = self(i, j) * scalar;
}
}
}
void operator/=(Type scalar)
{
Matrix<Type, M, N> &self = *this;
self = self * (1.0f / scalar);
}
inline void operator+=(Type scalar)
{
*this = (*this) + scalar;
}
inline void operator-=(Type scalar)
{
*this = (*this) - scalar;
}
/**
* Misc. Functions
*/
void print() const
{
const Matrix<Type, M, N> &self = *this;
printf("\n");
for (size_t i = 0; i < M; i++) {
printf("[");
for (size_t j = 0; j < N; j++) {
printf("%10g\t", double(self(i, j)));
}
printf("]\n");
}
}
Matrix<Type, N, M> transpose() const
{
Matrix<Type, N, M> res;
const Matrix<Type, M, N> &self = *this;
for (size_t i = 0; i < M; i++) {
for (size_t j = 0; j < N; j++) {
res(j, i) = self(i, j);
}
}
return res;
}
// tranpose alias
inline Matrix<Type, N, M> T() const
{
return transpose();
}
void setZero()
{
memset(_data, 0, sizeof(_data));
}
void setIdentity()
{
setZero();
Matrix<Type, M, N> &self = *this;
for (size_t i = 0; i < M and i < N; i++) {
self(i, i) = 1;
}
}
inline void swapRows(size_t a, size_t b)
{
if (a == b) {
return;
}
Matrix<Type, M, N> &self = *this;
for (size_t j = 0; j < N; j++) {
Type tmp = self(a, j);
self(a, j) = self(b, j);
self(b, j) = tmp;
}
}
inline void swapCols(size_t a, size_t b)
{
if (a == b) {
return;
}
Matrix<Type, M, N> &self = *this;
for (size_t i = 0; i < M; i++) {
Type tmp = self(i, a);
self(i, a) = self(i, b);
self(i, b) = tmp;
}
}
Matrix<Type, M, N> abs()
{
Matrix<Type, M, N> r;
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
r(i,j) = Type(fabs((*this)(i,j)));
}
}
return r;
}
Type max()
{
Type max_val = (*this)(0,0);
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
Type val = (*this)(i,j);
if (val > max_val) {
max_val = val;
}
}
}
return max_val;
}
Type min()
{
Type min_val = (*this)(0,0);
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
Type val = (*this)(i,j);
if (val < min_val) {
min_val = val;
}
}
}
return min_val;
}
};
template<typename Type, size_t M, size_t N>
Matrix<Type, M, N> zero() {
Matrix<Type, M, N> m;
m.setZero();
return m;
}
typedef Matrix<float, 3, 3> Matrix3f;
}; // namespace matrix
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */

11
matrix/matrix.hpp

@ -1,11 +0,0 @@
#pragma once
#include "Matrix.hpp"
#include "SquareMatrix.hpp"
#include "Vector.hpp"
#include "Vector3.hpp"
#include "Euler.hpp"
#include "Dcm.hpp"
#include "Scalar.hpp"
#include "Quaternion.hpp"
#include "filter.hpp"
Loading…
Cancel
Save