Matthias Grob
3 years ago
3 changed files with 112 additions and 107 deletions
@ -0,0 +1,111 @@
@@ -0,0 +1,111 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (C) 2022 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
#include <gtest/gtest.h> |
||||
#include <matrix/math.hpp> |
||||
|
||||
using namespace matrix; |
||||
|
||||
int test_4x3(void); |
||||
template<typename Type> int test_4x4(void); |
||||
int test_4x4_type_double(void); |
||||
int test_div_zero(void); |
||||
|
||||
TEST(MatrixLeastSquaresTest, 4x3) |
||||
{ |
||||
// Start with an (m x n) A matrix
|
||||
float data[12] = {20.f, -10.f, -13.f, |
||||
17.f, 16.f, -18.f, |
||||
0.7f, -0.8f, 0.9f, |
||||
-1.f, -1.1f, -1.2f |
||||
}; |
||||
Matrix<float, 4, 3> A(data); |
||||
|
||||
float b_data[4] = {2.0f, 3.0f, 4.0f, 5.0f}; |
||||
Vector<float, 4> b(b_data); |
||||
|
||||
float x_check_data[3] = {-0.69168233f, |
||||
-0.26227593f, |
||||
-1.03767522f |
||||
}; |
||||
Vector<float, 3> x_check(x_check_data); |
||||
|
||||
LeastSquaresSolver<float, 4, 3> qrd = LeastSquaresSolver<float, 4, 3>(A); |
||||
|
||||
Vector<float, 3> x = qrd.solve(b); |
||||
EXPECT_EQ(x, x_check); |
||||
} |
||||
|
||||
TEST(MatrixLeastSquaresTest, 4x4) |
||||
{ |
||||
// Start with an (m x n) A matrix
|
||||
const float data[16] = { 20.f, -10.f, -13.f, 21.f, |
||||
17.f, 16.f, -18.f, -14.f, |
||||
0.7f, -0.8f, 0.9f, -0.5f, |
||||
-1.f, -1.1f, -1.2f, -1.3f |
||||
}; |
||||
Matrix<float, 4, 4> A(data); |
||||
|
||||
float b_data[4] = {2.0f, 3.0f, 4.0f, 5.0f}; |
||||
Vector<float, 4> b(b_data); |
||||
|
||||
float x_check_data[4] = { 0.97893433f, |
||||
-2.80798701f, |
||||
-0.03175765f, |
||||
-2.19387649f |
||||
}; |
||||
Vector<float, 4> x_check(x_check_data); |
||||
|
||||
LeastSquaresSolver<float, 4, 4> qrd = LeastSquaresSolver<float, 4, 4>(A); |
||||
|
||||
Vector<float, 4> x = qrd.solve(b); |
||||
EXPECT_EQ(x, x_check); |
||||
} |
||||
|
||||
TEST(MatrixLeastSquaresTest, ZeroDivision) |
||||
{ |
||||
float data[4] = {0.0f, 0.0f, 0.0f, 0.0f}; |
||||
Matrix<float, 2, 2> A(data); |
||||
|
||||
float b_data[2] = {1.0f, 1.0f}; |
||||
Vector<float, 2> b(b_data); |
||||
|
||||
// Implement such that x returns zeros if it reaches div by zero
|
||||
float x_check_data[2] = {0.0f, 0.0f}; |
||||
Vector<float, 2> x_check(x_check_data); |
||||
|
||||
LeastSquaresSolver<float, 2, 2> qrd = LeastSquaresSolver<float, 2, 2>(A); |
||||
|
||||
Vector<float, 2> x = qrd.solve(b); |
||||
EXPECT_EQ(x, x_check); |
||||
} |
@ -1,106 +0,0 @@
@@ -1,106 +0,0 @@
|
||||
#include "test_macros.hpp" |
||||
#include <matrix/math.hpp> |
||||
|
||||
using namespace matrix; |
||||
|
||||
int test_4x3(void); |
||||
template<typename Type> int test_4x4(void); |
||||
int test_4x4_type_double(void); |
||||
int test_div_zero(void); |
||||
|
||||
int main() |
||||
{ |
||||
int ret; |
||||
|
||||
ret = test_4x4<float>(); |
||||
|
||||
if (ret != 0) { return ret; } |
||||
|
||||
ret = test_4x4<double>(); |
||||
|
||||
if (ret != 0) { return ret; } |
||||
|
||||
ret = test_4x3(); |
||||
|
||||
if (ret != 0) { return ret; } |
||||
|
||||
ret = test_div_zero(); |
||||
|
||||
if (ret != 0) { return ret; } |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int test_4x3() |
||||
{ |
||||
// Start with an (m x n) A matrix
|
||||
float data[12] = {20.f, -10.f, -13.f, |
||||
17.f, 16.f, -18.f, |
||||
0.7f, -0.8f, 0.9f, |
||||
-1.f, -1.1f, -1.2f |
||||
}; |
||||
Matrix<float, 4, 3> A(data); |
||||
|
||||
float b_data[4] = {2.0f, 3.0f, 4.0f, 5.0f}; |
||||
Vector<float, 4> b(b_data); |
||||
|
||||
float x_check_data[3] = {-0.69168233f, |
||||
-0.26227593f, |
||||
-1.03767522f |
||||
}; |
||||
Vector<float, 3> x_check(x_check_data); |
||||
|
||||
LeastSquaresSolver<float, 4, 3> qrd = LeastSquaresSolver<float, 4, 3>(A); |
||||
|
||||
Vector<float, 3> x = qrd.solve(b); |
||||
TEST(isEqual(x, x_check)); |
||||
return 0; |
||||
} |
||||
|
||||
template<typename Type> |
||||
int test_4x4() |
||||
{ |
||||
// Start with an (m x n) A matrix
|
||||
const Type data[16] = { 20.f, -10.f, -13.f, 21.f, |
||||
17.f, 16.f, -18.f, -14.f, |
||||
0.7f, -0.8f, 0.9f, -0.5f, |
||||
-1.f, -1.1f, -1.2f, -1.3f |
||||
}; |
||||
Matrix<Type, 4, 4> A(data); |
||||
|
||||
Type b_data[4] = {2.0f, 3.0f, 4.0f, 5.0f}; |
||||
Vector<Type, 4> b(b_data); |
||||
|
||||
Type x_check_data[4] = { 0.97893433f, |
||||
-2.80798701f, |
||||
-0.03175765f, |
||||
-2.19387649f |
||||
}; |
||||
Vector<Type, 4> x_check(x_check_data); |
||||
|
||||
LeastSquaresSolver<Type, 4, 4> qrd = LeastSquaresSolver<Type, 4, 4>(A); |
||||
|
||||
Vector<Type, 4> x = qrd.solve(b); |
||||
TEST(isEqual(x, x_check)); |
||||
return 0; |
||||
} |
||||
|
||||
int test_div_zero() |
||||
{ |
||||
float data[4] = {0.0f, 0.0f, 0.0f, 0.0f}; |
||||
Matrix<float, 2, 2> A(data); |
||||
|
||||
float b_data[2] = {1.0f, 1.0f}; |
||||
Vector<float, 2> b(b_data); |
||||
|
||||
// Implement such that x returns zeros if it reaches div by zero
|
||||
float x_check_data[2] = {0.0f, 0.0f}; |
||||
Vector<float, 2> x_check(x_check_data); |
||||
|
||||
LeastSquaresSolver<float, 2, 2> qrd = LeastSquaresSolver<float, 2, 2>(A); |
||||
|
||||
Vector<float, 2> x = qrd.solve(b); |
||||
TEST(isEqual(x, x_check)); |
||||
return 0; |
||||
} |
||||
|
Loading…
Reference in new issue