Browse Source

Merge pull request #7 from PX4/ekf2_fixes

Ekf2 fixes
master
Roman Bapst 9 years ago
parent
commit
749156d4aa
  1. 108
      EKF/ekf.cpp
  2. 7
      EKF/ekf.h
  3. 2
      EKF/ekf_helper.cpp
  4. 8
      EKF/estimator_base.cpp
  5. 201
      EKF/vel_pos_fusion.cpp

108
EKF/ekf.cpp

@ -47,7 +47,8 @@ Ekf::Ekf(): @@ -47,7 +47,8 @@ Ekf::Ekf():
_earth_rate_initialised(false),
_fuse_height(false),
_fuse_pos(false),
_fuse_vel(false),
_fuse_hor_vel(false),
_fuse_vert_vel(false),
_mag_fuse_index(0),
_time_last_fake_gps(0)
{
@ -67,12 +68,15 @@ Ekf::~Ekf() @@ -67,12 +68,15 @@ Ekf::~Ekf()
bool Ekf::update()
{
bool ret = false; // indicates if there has been an update
if (!_filter_initialised) {
_filter_initialised = initialiseFilter();
if (!_filter_initialised) {
return false;
}
}
//printStates();
//printStatesFast();
// prediction
@ -85,9 +89,9 @@ bool Ekf::update() @@ -85,9 +89,9 @@ bool Ekf::update()
// measurement updates
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) {
fuseHeading();
//fuseMag(_mag_fuse_index);
//_mag_fuse_index = (_mag_fuse_index + 1) % 3;
//fuseHeading();
fuseMag(_mag_fuse_index);
_mag_fuse_index = (_mag_fuse_index + 1) % 3;
}
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) {
@ -96,16 +100,19 @@ bool Ekf::update() @@ -96,16 +100,19 @@ bool Ekf::update()
if (_gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed)) {
_fuse_pos = true;
_fuse_vel = true;
_fuse_vert_vel = true;
_fuse_hor_vel = true;
} else if (_time_last_imu - _time_last_gps > 2000000 && _time_last_imu - _time_last_fake_gps > 70000) {
_fuse_vel = true;
// if gps does not update then fake position and horizontal veloctiy measurements
_fuse_hor_vel = true; // we only fake horizontal velocity because we still have baro
_gps_sample_delayed.vel.setZero();
}
if (_fuse_height || _fuse_pos || _fuse_vel) {
if (_fuse_height || _fuse_pos || _fuse_hor_vel || _fuse_vert_vel) {
fuseVelPosHeight();
_fuse_vel = _fuse_pos = _fuse_height = false;
_fuse_hor_vel = _fuse_vert_vel = _fuse_pos = _fuse_height = false;
}
if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)) {
@ -133,7 +140,7 @@ bool Ekf::initialiseFilter(void) @@ -133,7 +140,7 @@ bool Ekf::initialiseFilter(void)
_state.mag_B.setZero();
_state.wind_vel.setZero();
// get initial roll and pitch estimate from accel vector, assuming vehicle is static
// get initial roll and pitch estimate from accel vector, assuming vehicle is static
Vector3f accel_init = _imu_down_sampled.delta_vel / _imu_down_sampled.delta_vel_dt;
float pitch = 0.0f;
@ -146,32 +153,44 @@ bool Ekf::initialiseFilter(void) @@ -146,32 +153,44 @@ bool Ekf::initialiseFilter(void)
roll = -asinf(accel_init(1) / cosf(pitch));
}
matrix::Euler<float> euler_init(roll, pitch, 0.0f);
matrix::Euler<float> euler_init(roll, pitch, 0.0f);
// Get the latest magnetic field measurement.
// If we don't have a measurement then we cannot initialise the filter
magSample mag_init = _mag_buffer.get_newest();
// Get the latest magnetic field measurement.
// If we don't have a measurement then we cannot initialise the filter
magSample mag_init = _mag_buffer.get_newest();
if (mag_init.time_us == 0) {
return false;
}
// rotate magnetic field into earth frame assuming zero yaw and estimate yaw angle assuming zero declination
// TODO use declination if available
matrix::Dcm<float> R_to_earth_zeroyaw(euler_init);
Vector3f mag_ef_zeroyaw = R_to_earth_zeroyaw * mag_init.mag;
float declination = 0.0f;
euler_init(2) = declination - atan2f(mag_ef_zeroyaw(1), mag_ef_zeroyaw(0));
// rotate magnetic field into earth frame assuming zero yaw and estimate yaw angle assuming zero declination
// TODO use declination if available
matrix::Dcm<float> R_to_earth_zeroyaw(euler_init);
Vector3f mag_ef_zeroyaw = R_to_earth_zeroyaw * mag_init.mag;
float declination = 0.0f;
euler_init(2) = declination - atan2f(mag_ef_zeroyaw(1), mag_ef_zeroyaw(0));
// calculate initial quaternion states
_state.quat_nominal = Quaternion(euler_init);
// calculate initial quaternion states
_state.quat_nominal = Quaternion(euler_init);
_output_new.quat_nominal = _state.quat_nominal;
// calculate initial earth magnetic field states
matrix::Dcm<float> R_to_earth(euler_init);
_state.mag_I = R_to_earth * mag_init.mag;
// calculate initial earth magnetic field states
matrix::Dcm<float> R_to_earth(euler_init);
_state.mag_I = R_to_earth * mag_init.mag;
resetVelocity();
resetVelocity();
resetPosition();
// initialize vertical position with newest baro measurement
baroSample baro_init = _baro_buffer.get_newest();
if (baro_init.time_us == 0) {
return false;
}
_state.pos(2) = -baro_init.hgt;
_output_new.pos(2) = -baro_init.hgt;
initialiseCovariance();
return true;
@ -181,14 +200,15 @@ void Ekf::predictState() @@ -181,14 +200,15 @@ void Ekf::predictState()
{
if (!_earth_rate_initialised) {
if (_gps_initialised) {
calcEarthRateNED(_earth_rate_NED, _posRef.lat_rad );
calcEarthRateNED(_earth_rate_NED, _posRef.lat_rad);
_earth_rate_initialised = true;
}
}
// attitude error state prediciton
matrix::Dcm<float> R_to_earth(_state.quat_nominal); // transformation matrix from body to world frame
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _R_prev * _earth_rate_NED * _imu_sample_delayed.delta_ang_dt;
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _R_prev * _earth_rate_NED *
_imu_sample_delayed.delta_ang_dt;
Quaternion dq; // delta quaternion since last update
dq.from_axis_angle(corrected_delta_ang);
_state.quat_nominal = dq * _state.quat_nominal;
@ -245,8 +265,7 @@ void Ekf::calculateOutputStates() @@ -245,8 +265,7 @@ void Ekf::calculateOutputStates()
_imu_updated = false;
}
if (!_output_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_output_sample_delayed))
{
if (!_output_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_output_sample_delayed)) {
return;
}
@ -259,6 +278,7 @@ void Ekf::calculateOutputStates() @@ -259,6 +278,7 @@ void Ekf::calculateOutputStates()
if (q_error(0) >= 0.0f) {
scalar = -2.0f;
} else {
scalar = 2.0f;
}
@ -292,7 +312,8 @@ void Ekf::printStates() @@ -292,7 +312,8 @@ void Ekf::printStates()
if (counter % 50 == 0) {
printf("quaternion\n");
for(int i = 0; i < 4; i++) {
for (int i = 0; i < 4; i++) {
printf("quat %i %.5f\n", i, (double)_state.quat_nominal(i));
}
@ -300,31 +321,38 @@ void Ekf::printStates() @@ -300,31 +321,38 @@ void Ekf::printStates()
printf("yaw pitch roll %.5f %.5f %.5f\n", (double)euler(2), (double)euler(1), (double)euler(0));
printf("vel\n");
for(int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
printf("v %i %.5f\n", i, (double)_state.vel(i));
}
printf("pos\n");
for(int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
printf("p %i %.5f\n", i, (double)_state.pos(i));
}
printf("gyro_scale\n");
for(int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
printf("gs %i %.5f\n", i, (double)_state.gyro_scale(i));
}
printf("mag earth\n");
for(int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
printf("mI %i %.5f\n", i, (double)_state.mag_I(i));
}
printf("mag bias\n");
for(int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
printf("mB %i %.5f\n", i, (double)_state.mag_B(i));
}
counter = 0;
}
counter++;
}
@ -335,21 +363,25 @@ void Ekf::printStatesFast() @@ -335,21 +363,25 @@ void Ekf::printStatesFast()
if (counter_fast % 50 == 0) {
printf("quaternion\n");
for(int i = 0; i < 4; i++) {
for (int i = 0; i < 4; i++) {
printf("quat %i %.5f\n", i, (double)_output_new.quat_nominal(i));
}
printf("vel\n");
for(int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
printf("v %i %.5f\n", i, (double)_output_new.vel(i));
}
printf("pos\n");
for(int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
printf("p %i %.5f\n", i, (double)_output_new.pos(i));
}
counter_fast = 0;
}
counter_fast++;
}

7
EKF/ekf.h

@ -60,9 +60,10 @@ private: @@ -60,9 +60,10 @@ private:
bool _filter_initialised;
bool _earth_rate_initialised;
bool _fuse_height; // true if there is new baro data
bool _fuse_pos; // true if there is new position data from gps
bool _fuse_vel; // true if there is new velocity data from gps
bool _fuse_height; // baro height data should be fused
bool _fuse_pos; // gps position data should be fused
bool _fuse_hor_vel; // gps horizontal velocity measurement should be fused
bool _fuse_vert_vel; // gps vertical velocity measurement should be fused
uint8_t _mag_fuse_index; // counter for sequential mag axis fusion

2
EKF/ekf_helper.cpp

@ -78,7 +78,7 @@ void Ekf::resetPosition() @@ -78,7 +78,7 @@ void Ekf::resetPosition()
}
baroSample baro_newest = _baro_buffer.get_newest();
_state.pos(2) = baro_newest.hgt;
_state.pos(2) = -baro_newest.hgt;
}
#if defined(__PX4_POSIX) && !defined(__PX4_QURT)

8
EKF/estimator_base.cpp

@ -145,7 +145,7 @@ void EstimatorBase::setMagData(uint64_t time_usec, float *data) @@ -145,7 +145,7 @@ void EstimatorBase::setMagData(uint64_t time_usec, float *data)
mag_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2;
_time_last_mag = mag_sample_new.time_us;
_time_last_mag = time_usec;
memcpy(&mag_sample_new.mag._data[0], data, sizeof(mag_sample_new.mag._data));
@ -168,7 +168,7 @@ void EstimatorBase::setGpsData(uint64_t time_usec, struct gps_message *gps) @@ -168,7 +168,7 @@ void EstimatorBase::setGpsData(uint64_t time_usec, struct gps_message *gps)
gps_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2;
_time_last_gps = gps_sample_new.time_us;
_time_last_gps = time_usec;
_last_valid_gps_time_us = hrt_absolute_time();
@ -200,7 +200,7 @@ void EstimatorBase::setBaroData(uint64_t time_usec, float *data) @@ -200,7 +200,7 @@ void EstimatorBase::setBaroData(uint64_t time_usec, float *data)
baro_sample_new.time_us = time_usec - _params.baro_delay_ms * 1000;
baro_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2;
_time_last_baro = baro_sample_new.time_us;
_time_last_baro = time_usec;
baro_sample_new.time_us = math::max(baro_sample_new.time_us, _imu_sample_delayed.time_us);
@ -216,7 +216,7 @@ void EstimatorBase::setAirspeedData(uint64_t time_usec, float *data) @@ -216,7 +216,7 @@ void EstimatorBase::setAirspeedData(uint64_t time_usec, float *data)
airspeed_sample_new.time_us -= _params.airspeed_delay_ms * 1000;
airspeed_sample_new.time_us = time_usec -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2;
_time_last_airspeed = airspeed_sample_new.time_us;
_time_last_airspeed = time_usec;
_airspeed_buffer.push(airspeed_sample_new);
}

201
EKF/vel_pos_fusion.cpp

@ -41,64 +41,69 @@ @@ -41,64 +41,69 @@
#include "ekf.h"
void Ekf::fuseVelPosHeight()
{
bool fuse_map[6] = {};
float innovations[6] = {};
float R[6] = {};
float Kfusion[24] = {};
// calculate innovations
if (_fuse_vel) {
fuse_map[0] = fuse_map[1] = fuse_map[2] = true;
innovations[0] = _state.vel(0) - _gps_sample_delayed.vel(0);
innovations[1] = _state.vel(1) - _gps_sample_delayed.vel(1);
innovations[2] = _state.vel(2) - _gps_sample_delayed.vel(2);
R[0] = _params.gps_vel_noise;
R[1] = _params.gps_vel_noise;
R[2] = _params.gps_vel_noise;
}
if (_fuse_pos) {
fuse_map[3] = fuse_map[4] = true;
innovations[3] = _state.pos(0) - _gps_sample_delayed.pos(0);
innovations[4] = _state.pos(1) - _gps_sample_delayed.pos(1);
R[3] = _params.gps_pos_noise;
R[4] = _params.gps_pos_noise;
}
if (_fuse_height) {
fuse_map[5] = true;
innovations[5] = _state.pos(2) - (-_baro_sample_delayed.hgt); // baro measurement has inversed z axis
R[5] = _params.baro_noise;
}
// XXX Do checks here
for (unsigned obs_index = 0; obs_index < 6; obs_index++) {
if (!fuse_map[obs_index]) {
continue;
}
unsigned state_index = obs_index + 3; // we start with vx and this is the 4. state
// compute the innovation variance SK = HPH + R
float S = P[state_index][state_index] + R[obs_index];
S = 1.0f / S;
// calculate kalman gain K = PHS
for (int row = 0; row < 24; row++) {
Kfusion[row] = P[row][state_index] * S;
}
// by definition the angle error state is zero at the fusion time
_state.ang_error.setZero();
// fuse the observation
fuse(Kfusion, innovations[obs_index]);
// correct the nominal quaternion
Quaternion dq;
void Ekf::fuseVelPosHeight()
{
bool fuse_map[6] = {};
float innovations[6] = {};
float R[6] = {};
float Kfusion[24] = {};
// calculate innovations
if (_fuse_hor_vel) {
fuse_map[0] = fuse_map[1] = true;
innovations[0] = _state.vel(0) - _gps_sample_delayed.vel(0);
innovations[1] = _state.vel(1) - _gps_sample_delayed.vel(1);
R[0] = _params.gps_vel_noise;
R[1] = _params.gps_vel_noise;
}
if (_fuse_vert_vel) {
fuse_map[2] = true;
innovations[2] = _state.vel(2) - _gps_sample_delayed.vel(2);
R[2] = _params.gps_vel_noise;
}
if (_fuse_pos) {
fuse_map[3] = fuse_map[4] = true;
innovations[3] = _state.pos(0) - _gps_sample_delayed.pos(0);
innovations[4] = _state.pos(1) - _gps_sample_delayed.pos(1);
R[3] = _params.gps_pos_noise;
R[4] = _params.gps_pos_noise;
}
if (_fuse_height) {
fuse_map[5] = true;
innovations[5] = _state.pos(2) - (-_baro_sample_delayed.hgt); // baro measurement has inversed z axis
R[5] = _params.baro_noise;
}
// XXX Do checks here
for (unsigned obs_index = 0; obs_index < 6; obs_index++) {
if (!fuse_map[obs_index]) {
continue;
}
unsigned state_index = obs_index + 3; // we start with vx and this is the 4. state
// compute the innovation variance SK = HPH + R
float S = P[state_index][state_index] + R[obs_index];
S = 1.0f / S;
// calculate kalman gain K = PHS
for (int row = 0; row < 24; row++) {
Kfusion[row] = P[row][state_index] * S;
}
// by definition the angle error state is zero at the fusion time
_state.ang_error.setZero();
// fuse the observation
fuse(Kfusion, innovations[obs_index]);
// correct the nominal quaternion
Quaternion dq;
dq.from_axis_angle(_state.ang_error);
_state.quat_nominal = dq * _state.quat_nominal;
_state.quat_nominal.normalize();
@ -120,43 +125,43 @@ @@ -120,43 +125,43 @@
makeSymmetrical();
limitCov();
}
}
void Ekf::fuse(float *K, float innovation)
{
for (unsigned i = 0; i < 3; i++) {
_state.ang_error(i) = _state.ang_error(i) - K[i] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.vel(i) = _state.vel(i) - K[i + 3] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.pos(i) = _state.pos(i) - K[i + 6] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.gyro_bias(i) = _state.gyro_bias(i) - K[i + 9] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.gyro_scale(i) = _state.gyro_scale(i) - K[i + 12] * innovation;
}
_state.accel_z_bias -= K[15] * innovation;
for (unsigned i = 0; i < 3; i++) {
_state.mag_I(i) = _state.mag_I(i) - K[i + 16] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.mag_B(i) = _state.mag_B(i) - K[i + 19] * innovation;
}
for (unsigned i = 0; i < 2; i++) {
_state.wind_vel(i) = _state.wind_vel(i) - K[i + 22] * innovation;
}
}
}
}
void Ekf::fuse(float *K, float innovation)
{
for (unsigned i = 0; i < 3; i++) {
_state.ang_error(i) = _state.ang_error(i) - K[i] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.vel(i) = _state.vel(i) - K[i + 3] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.pos(i) = _state.pos(i) - K[i + 6] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.gyro_bias(i) = _state.gyro_bias(i) - K[i + 9] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.gyro_scale(i) = _state.gyro_scale(i) - K[i + 12] * innovation;
}
_state.accel_z_bias -= K[15] * innovation;
for (unsigned i = 0; i < 3; i++) {
_state.mag_I(i) = _state.mag_I(i) - K[i + 16] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.mag_B(i) = _state.mag_B(i) - K[i + 19] * innovation;
}
for (unsigned i = 0; i < 2; i++) {
_state.wind_vel(i) = _state.wind_vel(i) - K[i + 22] * innovation;
}
}

Loading…
Cancel
Save