Roman
6 years ago
committed by
Paul Riseborough
1 changed files with 98 additions and 0 deletions
@ -0,0 +1,98 @@
@@ -0,0 +1,98 @@
|
||||
""" |
||||
|
||||
This script calculates the observation scalars (H matrix) for fusing optical flow |
||||
measurements for terrain estimation. |
||||
|
||||
@author: roman |
||||
""" |
||||
|
||||
from sympy import * |
||||
|
||||
# q: quaternion describing rotation from frame 1 to frame 2 |
||||
# returns a rotation matrix derived form q which describes the same |
||||
# rotation |
||||
def quat2Rot(q): |
||||
q0 = q[0] |
||||
q1 = q[1] |
||||
q2 = q[2] |
||||
q3 = q[3] |
||||
|
||||
Rot = Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2*(q1*q2 - q0*q3), 2*(q1*q3 + q0*q2)], |
||||
[2*(q1*q2 + q0*q3), q0**2 - q1**2 + q2**2 - q3**2, 2*(q2*q3 - q0*q1)], |
||||
[2*(q1*q3-q0*q2), 2*(q2*q3 + q0*q1), q0**2 - q1**2 - q2**2 + q3**2]]) |
||||
|
||||
return Rot |
||||
|
||||
# take an expression calculated by the cse() method and write the expression |
||||
# into a text file in C format |
||||
def write_simplified(P_touple, filename, out_name): |
||||
subs = P_touple[0] |
||||
P = Matrix(P_touple[1]) |
||||
fd = open(filename, 'a') |
||||
|
||||
is_vector = P.shape[0] == 1 or P.shape[1] == 1 |
||||
|
||||
# write sub expressions |
||||
for index, item in enumerate(subs): |
||||
fd.write('float ' + str(item[0]) + ' = ' + str(item[1]) + ';\n') |
||||
|
||||
# write actual matrix values |
||||
fd.write('\n') |
||||
|
||||
if not is_vector: |
||||
iterator = range(0,sqrt(len(P)), 1) |
||||
for row in iterator: |
||||
for column in iterator: |
||||
fd.write(out_name + '(' + str(row) + ',' + str(column) + ') = ' + str(P[row, column]) + ';\n') |
||||
else: |
||||
iterator = range(0, len(P), 1) |
||||
|
||||
for item in iterator: |
||||
fd.write(out_name + '(' + str(item) + ') = ' + str(P[item]) + ';\n') |
||||
|
||||
fd.write('\n\n') |
||||
fd.close() |
||||
|
||||
########## Symbolic variable definition ####################################### |
||||
|
||||
|
||||
# vehicle velocity |
||||
v_x = Symbol("v_x", real=True) # vehicle body x velocity |
||||
v_y = Symbol("v_y", real=True) # vehicle body y velocity |
||||
|
||||
# unit quaternion describing vehicle attitude, qw is real part |
||||
qw = Symbol("q0", real=True) |
||||
qx = Symbol("q1", real=True) |
||||
qy = Symbol("q2", real=True) |
||||
qz = Symbol("q3", real=True) |
||||
q_att = Matrix([qw, qx, qy, qz]) |
||||
|
||||
# terrain vertial position in local NED frame |
||||
_terrain_vpos = Symbol("_terrain_vpos", real=True) |
||||
|
||||
_terrain_var = Symbol("_terrain_var", real=True) |
||||
|
||||
# vehicle vertical position in local NED frame |
||||
pos_z = Symbol("z", real=True) |
||||
|
||||
R_body_to_earth = quat2Rot(q_att) |
||||
|
||||
# Optical flow around x axis |
||||
flow_x = -v_y / (_terrain_vpos - pos_z) * R_body_to_earth[2,2] |
||||
|
||||
# Calculate observation scalar |
||||
H_x = Matrix([flow_x]).jacobian(Matrix([_terrain_vpos])) |
||||
|
||||
H_x_simple = cse(H_x, symbols('t0:30')) |
||||
|
||||
# Optical flow around y axis |
||||
flow_y = v_x / (_terrain_vpos - pos_z) * R_body_to_earth[2,2] |
||||
|
||||
# Calculate observation scalar |
||||
H_y = Matrix([flow_y]).jacobian(Matrix([_terrain_vpos])) |
||||
|
||||
H_y_simple = cse(H_y, symbols('t0:30')) |
||||
|
||||
write_simplified(H_x_simple, "flow_x_observation.txt", "Hx") |
||||
write_simplified(H_y_simple, "flow_y_observation.txt", "Hy") |
||||
|
Loading…
Reference in new issue