Matthias Grob
3 years ago
3 changed files with 342 additions and 312 deletions
@ -0,0 +1,341 @@
@@ -0,0 +1,341 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (C) 2022 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
#include <gtest/gtest.h> |
||||
#include <matrix/math.hpp> |
||||
#include <iostream> |
||||
|
||||
using namespace matrix; |
||||
|
||||
template <typename Scalar, size_t N> |
||||
bool isEqualAll(Dual<Scalar, N> a, Dual<Scalar, N> b) |
||||
{ |
||||
return isEqualF(a.value, b.value) && a.derivative == b.derivative; |
||||
} |
||||
|
||||
template <typename T> |
||||
T testFunction(const Vector<T, 3> &point) |
||||
{ |
||||
// function is f(x,y,z) = x^2 + 2xy + 3y^2 + z
|
||||
return point(0) * point(0) |
||||
+ 2.f * point(0) * point(1) |
||||
+ 3.f * point(1) * point(1) |
||||
+ point(2); |
||||
} |
||||
|
||||
template <typename Scalar> |
||||
Vector<Scalar, 3> positionError(const Vector<Scalar, 3> &positionState, |
||||
const Vector<Scalar, 3> &velocityStateBody, |
||||
const Quaternion<Scalar> &bodyOrientation, |
||||
const Vector<Scalar, 3> &positionMeasurement, |
||||
Scalar dt |
||||
) |
||||
{ |
||||
return positionMeasurement - (positionState + bodyOrientation.rotateVector(velocityStateBody) * dt); |
||||
} |
||||
|
||||
TEST(MatrixDualTest, Dual) |
||||
{ |
||||
const Dual<float, 1> a(3, 0); |
||||
const Dual<float, 1> b(6, 0); |
||||
|
||||
{ |
||||
EXPECT_FLOAT_EQ(a.value, 3.f); |
||||
EXPECT_FLOAT_EQ(a.derivative(0), 1.f); |
||||
} |
||||
|
||||
{ |
||||
// addition
|
||||
Dual<float, 1> c = a + b; |
||||
EXPECT_FLOAT_EQ(c.value, 9.f); |
||||
EXPECT_FLOAT_EQ(c.derivative(0), 2.f); |
||||
|
||||
Dual<float, 1> d = +a; |
||||
EXPECT_TRUE(isEqualAll(d, a)); |
||||
d += b; |
||||
EXPECT_TRUE(isEqualAll(d, c)); |
||||
|
||||
Dual<float, 1> e = a; |
||||
e += b.value; |
||||
EXPECT_FLOAT_EQ(e.value, c.value); |
||||
EXPECT_EQ(e.derivative, a.derivative); |
||||
|
||||
Dual<float, 1> f = b.value + a; |
||||
EXPECT_TRUE(isEqualAll(f, e)); |
||||
} |
||||
|
||||
{ |
||||
// subtraction
|
||||
Dual<float, 1> c = b - a; |
||||
EXPECT_FLOAT_EQ(c.value, 3.f); |
||||
EXPECT_FLOAT_EQ(c.derivative(0), 0.f); |
||||
|
||||
Dual<float, 1> d = b; |
||||
EXPECT_TRUE(isEqualAll(d, b)); |
||||
d -= a; |
||||
EXPECT_TRUE(isEqualAll(d, c)); |
||||
|
||||
Dual<float, 1> e = b; |
||||
e -= a.value; |
||||
EXPECT_FLOAT_EQ(e.value, c.value); |
||||
EXPECT_EQ(e.derivative, b.derivative); |
||||
|
||||
Dual<float, 1> f = a.value - b; |
||||
EXPECT_TRUE(isEqualAll(f, -e)); |
||||
} |
||||
|
||||
{ |
||||
// multiplication
|
||||
Dual<float, 1> c = a * b; |
||||
EXPECT_FLOAT_EQ(c.value, 18.f); |
||||
EXPECT_FLOAT_EQ(c.derivative(0), 9.f); |
||||
|
||||
Dual<float, 1> d = a; |
||||
EXPECT_TRUE(isEqualAll(d, a)); |
||||
d *= b; |
||||
EXPECT_TRUE(isEqualAll(d, c)); |
||||
|
||||
Dual<float, 1> e = a; |
||||
e *= b.value; |
||||
EXPECT_FLOAT_EQ(e.value, c.value); |
||||
EXPECT_EQ(e.derivative, a.derivative * b.value); |
||||
|
||||
Dual<float, 1> f = b.value * a; |
||||
EXPECT_TRUE(isEqualAll(f, e)); |
||||
} |
||||
|
||||
{ |
||||
// division
|
||||
Dual<float, 1> c = b / a; |
||||
EXPECT_FLOAT_EQ(c.value, 2.f); |
||||
EXPECT_FLOAT_EQ(c.derivative(0), -1.f / 3.f); |
||||
|
||||
Dual<float, 1> d = b; |
||||
EXPECT_TRUE(isEqualAll(d, b)); |
||||
d /= a; |
||||
EXPECT_TRUE(isEqualAll(d, c)); |
||||
|
||||
Dual<float, 1> e = b; |
||||
e /= a.value; |
||||
EXPECT_FLOAT_EQ(e.value, c.value); |
||||
EXPECT_EQ(e.derivative, b.derivative / a.value); |
||||
|
||||
Dual<float, 1> f = a.value / b; |
||||
EXPECT_TRUE(isEqualAll(f, 1.f / e)); |
||||
} |
||||
|
||||
{ |
||||
Dual<float, 1> blank; |
||||
EXPECT_FLOAT_EQ(blank.value, 0.f); |
||||
EXPECT_FLOAT_EQ(blank.derivative(0), 0.f); |
||||
} |
||||
|
||||
{ |
||||
// sqrt
|
||||
EXPECT_FLOAT_EQ(sqrt(a).value, sqrt(a.value)); |
||||
EXPECT_FLOAT_EQ(sqrt(a).derivative(0), 1.f / sqrt(12.f)); |
||||
} |
||||
|
||||
{ |
||||
// abs
|
||||
EXPECT_TRUE(isEqualAll(a, abs(-a))); |
||||
EXPECT_FALSE(isEqualAll(-a, abs(a))); |
||||
EXPECT_TRUE(isEqualAll(-a, -abs(a))); |
||||
} |
||||
|
||||
{ |
||||
// ceil
|
||||
Dual<float, 1> c(1.5, 0); |
||||
EXPECT_FLOAT_EQ(ceil(c).value, ceil(c.value)); |
||||
EXPECT_FLOAT_EQ(ceil(c).derivative(0), 0.f); |
||||
} |
||||
|
||||
{ |
||||
// floor
|
||||
Dual<float, 1> c(1.5, 0); |
||||
EXPECT_FLOAT_EQ(floor(c).value, floor(c.value)); |
||||
EXPECT_FLOAT_EQ(floor(c).derivative(0), 0.f); |
||||
} |
||||
|
||||
{ |
||||
// fmod
|
||||
EXPECT_FLOAT_EQ(fmod(a, 0.8f).value, fmod(a.value, 0.8f)); |
||||
EXPECT_EQ(fmod(a, 0.8f).derivative, a.derivative); |
||||
} |
||||
|
||||
{ |
||||
// max/min
|
||||
EXPECT_TRUE(isEqualAll(b, max(a, b))); |
||||
EXPECT_TRUE(isEqualAll(a, min(a, b))); |
||||
} |
||||
|
||||
{ |
||||
// isnan
|
||||
EXPECT_FALSE(IsNan(a)); |
||||
Dual<float, 1> c(sqrt(-1.f), 0); |
||||
EXPECT_TRUE(IsNan(c)); |
||||
} |
||||
|
||||
{ |
||||
// isfinite/isinf
|
||||
EXPECT_TRUE(IsFinite(a)); |
||||
EXPECT_FALSE(IsInf(a)); |
||||
Dual<float, 1> c(sqrt(-1.f), 0); |
||||
EXPECT_FALSE(IsFinite(c)); |
||||
EXPECT_FALSE(IsInf(c)); |
||||
Dual<float, 1> d(INFINITY, 0); |
||||
EXPECT_FALSE(IsFinite(d)); |
||||
EXPECT_TRUE(IsInf(d)); |
||||
} |
||||
|
||||
{ |
||||
// sin/cos/tan
|
||||
EXPECT_FLOAT_EQ(sin(a).value, sin(a.value)); |
||||
EXPECT_FLOAT_EQ(sin(a).derivative(0), cos(a.value)); // sin'(x) = cos(x)
|
||||
|
||||
EXPECT_FLOAT_EQ(cos(a).value, cos(a.value)); |
||||
EXPECT_FLOAT_EQ(cos(a).derivative(0), -sin(a.value)); // cos'(x) = -sin(x)
|
||||
|
||||
EXPECT_FLOAT_EQ(tan(a).value, tan(a.value)); |
||||
EXPECT_FLOAT_EQ(tan(a).derivative(0), 1.f + tan(a.value)*tan(a.value)); // tan'(x) = 1 + tan^2(x)
|
||||
} |
||||
|
||||
{ |
||||
// asin/acos/atan
|
||||
Dual<float, 1> c(0.3f, 0); |
||||
EXPECT_FLOAT_EQ(asin(c).value, asin(c.value)); |
||||
EXPECT_FLOAT_EQ(asin(c).derivative(0), 1.f / sqrt(1.f - 0.3f * 0.3f)); // asin'(x) = 1/sqrt(1-x^2)
|
||||
|
||||
EXPECT_FLOAT_EQ(acos(c).value, acos(c.value)); |
||||
EXPECT_FLOAT_EQ(acos(c).derivative(0), -1.f / sqrt(1.f - 0.3f * 0.3f)); // acos'(x) = -1/sqrt(1-x^2)
|
||||
|
||||
EXPECT_FLOAT_EQ(atan(c).value, atan(c.value)); |
||||
EXPECT_FLOAT_EQ(atan(c).derivative(0), 1.f / (1.f + 0.3f * 0.3f)); // tan'(x) = 1 + x^2
|
||||
} |
||||
|
||||
{ |
||||
// atan2
|
||||
EXPECT_FLOAT_EQ(atan2(a, b).value, atan2(a.value, b.value)); |
||||
EXPECT_TRUE(isEqualAll(atan2(a, Dual<float, 1>(b.value)), atan(a / b.value))); // atan2'(y, x) = atan'(y/x)
|
||||
} |
||||
|
||||
{ |
||||
// partial derivatives
|
||||
// function is f(x,y,z) = x^2 + 2xy + 3y^2 + z, we need with respect to d/dx and d/dy at the point (0.5, -0.8, 2)
|
||||
|
||||
using D = Dual<float, 2>; |
||||
|
||||
// set our starting point, requesting partial derivatives of x and y in column 0 and 1
|
||||
Vector3<D> dualPoint(D(0.5f, 0), D(-0.8f, 1), D(2.f)); |
||||
|
||||
Dual<float, 2> dualResult = testFunction(dualPoint); |
||||
|
||||
// compare to a numerical derivative:
|
||||
Vector<float, 3> floatPoint = collectReals(dualPoint); |
||||
float floatResult = testFunction(floatPoint); |
||||
|
||||
float h = 0.0001f; |
||||
Vector<float, 3> floatPoint_plusDX = floatPoint; |
||||
floatPoint_plusDX(0) += h; |
||||
float floatResult_plusDX = testFunction(floatPoint_plusDX); |
||||
|
||||
Vector<float, 3> floatPoint_plusDY = floatPoint; |
||||
floatPoint_plusDY(1) += h; |
||||
float floatResult_plusDY = testFunction(floatPoint_plusDY); |
||||
|
||||
Vector2f numerical_derivative((floatResult_plusDX - floatResult) / h, |
||||
(floatResult_plusDY - floatResult) / h); |
||||
|
||||
EXPECT_EQ(dualResult.value, floatResult); |
||||
EXPECT_TRUE(isEqual(dualResult.derivative, numerical_derivative, 1e-2f)); |
||||
} |
||||
|
||||
{ |
||||
// jacobian
|
||||
// get residual of x/y/z with partial derivatives of rotation
|
||||
|
||||
Vector3f direct_error; |
||||
Matrix<float, 3, 4> numerical_jacobian; |
||||
{ |
||||
Vector3f positionState(5, 6, 7); |
||||
Vector3f velocityState(-1, 0, 1); |
||||
Quaternionf velocityOrientation(0.2f, -0.1f, 0, 1); |
||||
Vector3f positionMeasurement(4.5f, 6.2f, 7.9f); |
||||
float dt = 0.1f; |
||||
|
||||
direct_error = positionError(positionState, |
||||
velocityState, |
||||
velocityOrientation, |
||||
positionMeasurement, |
||||
dt); |
||||
float h = 0.001f; |
||||
|
||||
for (size_t i = 0; i < 4; i++) { |
||||
Quaternion<float> h4 = velocityOrientation; |
||||
h4(i) += h; |
||||
numerical_jacobian.col(i) = (positionError(positionState, |
||||
velocityState, |
||||
h4, |
||||
positionMeasurement, |
||||
dt) |
||||
- direct_error) / h; |
||||
} |
||||
} |
||||
Vector3f auto_error; |
||||
Matrix<float, 3, 4> auto_jacobian; |
||||
{ |
||||
using D4 = Dual<float, 4>; |
||||
using Vector3d4 = Vector3<D4>; |
||||
Vector3d4 positionState(D4(5), D4(6), D4(7)); |
||||
Vector3d4 velocityState(D4(-1), D4(0), D4(1)); |
||||
|
||||
// request partial derivatives of velocity orientation
|
||||
// by setting these variables' derivatives in corresponding columns [0...3]
|
||||
Quaternion<D4> velocityOrientation(D4(0.2f, 0), D4(-0.1f, 1), D4(0, 2), D4(1, 3)); |
||||
|
||||
Vector3d4 positionMeasurement(D4(4.5f), D4(6.2f), D4(7.9f)); |
||||
D4 dt(0.1f); |
||||
|
||||
|
||||
Vector3d4 error = positionError(positionState, |
||||
velocityState, |
||||
velocityOrientation, |
||||
positionMeasurement, |
||||
dt); |
||||
auto_error = collectReals(error); |
||||
auto_jacobian = collectDerivatives(error); |
||||
} |
||||
EXPECT_EQ(direct_error, auto_error); |
||||
EXPECT_TRUE(isEqual(numerical_jacobian, auto_jacobian, 1e-3f)); |
||||
} |
||||
} |
@ -1,311 +0,0 @@
@@ -1,311 +0,0 @@
|
||||
#include "test_macros.hpp" |
||||
#include <matrix/math.hpp> |
||||
#include <iostream> |
||||
|
||||
using namespace matrix; |
||||
|
||||
template <typename Scalar, size_t N> |
||||
bool isEqualAll(Dual<Scalar, N> a, Dual<Scalar, N> b) |
||||
{ |
||||
return isEqualF(a.value, b.value) && a.derivative == b.derivative; |
||||
} |
||||
|
||||
template <typename T> |
||||
T testFunction(const Vector<T, 3> &point) |
||||
{ |
||||
// function is f(x,y,z) = x^2 + 2xy + 3y^2 + z
|
||||
return point(0) * point(0) |
||||
+ 2.f * point(0) * point(1) |
||||
+ 3.f * point(1) * point(1) |
||||
+ point(2); |
||||
} |
||||
|
||||
template <typename Scalar> |
||||
Vector<Scalar, 3> positionError(const Vector<Scalar, 3> &positionState, |
||||
const Vector<Scalar, 3> &velocityStateBody, |
||||
const Quaternion<Scalar> &bodyOrientation, |
||||
const Vector<Scalar, 3> &positionMeasurement, |
||||
Scalar dt |
||||
) |
||||
{ |
||||
return positionMeasurement - (positionState + bodyOrientation.rotateVector(velocityStateBody) * dt); |
||||
} |
||||
|
||||
int main() |
||||
{ |
||||
const Dual<float, 1> a(3, 0); |
||||
const Dual<float, 1> b(6, 0); |
||||
|
||||
{ |
||||
TEST(isEqualF(a.value, 3.f)); |
||||
TEST(isEqualF(a.derivative(0), 1.f)); |
||||
} |
||||
|
||||
{ |
||||
// addition
|
||||
Dual<float, 1> c = a + b; |
||||
TEST(isEqualF(c.value, 9.f)); |
||||
TEST(isEqualF(c.derivative(0), 2.f)); |
||||
|
||||
Dual<float, 1> d = +a; |
||||
TEST(isEqualAll(d, a)); |
||||
d += b; |
||||
TEST(isEqualAll(d, c)); |
||||
|
||||
Dual<float, 1> e = a; |
||||
e += b.value; |
||||
TEST(isEqualF(e.value, c.value)); |
||||
TEST(isEqual(e.derivative, a.derivative)); |
||||
|
||||
Dual<float, 1> f = b.value + a; |
||||
TEST(isEqualAll(f, e)); |
||||
} |
||||
|
||||
{ |
||||
// subtraction
|
||||
Dual<float, 1> c = b - a; |
||||
TEST(isEqualF(c.value, 3.f)); |
||||
TEST(isEqualF(c.derivative(0), 0.f)); |
||||
|
||||
Dual<float, 1> d = b; |
||||
TEST(isEqualAll(d, b)); |
||||
d -= a; |
||||
TEST(isEqualAll(d, c)); |
||||
|
||||
Dual<float, 1> e = b; |
||||
e -= a.value; |
||||
TEST(isEqualF(e.value, c.value)); |
||||
TEST(isEqual(e.derivative, b.derivative)); |
||||
|
||||
Dual<float, 1> f = a.value - b; |
||||
TEST(isEqualAll(f, -e)); |
||||
} |
||||
|
||||
{ |
||||
// multiplication
|
||||
Dual<float, 1> c = a * b; |
||||
TEST(isEqualF(c.value, 18.f)); |
||||
TEST(isEqualF(c.derivative(0), 9.f)); |
||||
|
||||
Dual<float, 1> d = a; |
||||
TEST(isEqualAll(d, a)); |
||||
d *= b; |
||||
TEST(isEqualAll(d, c)); |
||||
|
||||
Dual<float, 1> e = a; |
||||
e *= b.value; |
||||
TEST(isEqualF(e.value, c.value)); |
||||
TEST(isEqual(e.derivative, a.derivative * b.value)); |
||||
|
||||
Dual<float, 1> f = b.value * a; |
||||
TEST(isEqualAll(f, e)); |
||||
} |
||||
|
||||
{ |
||||
// division
|
||||
Dual<float, 1> c = b / a; |
||||
TEST(isEqualF(c.value, 2.f)); |
||||
TEST(isEqualF(c.derivative(0), -1.f / 3.f)); |
||||
|
||||
Dual<float, 1> d = b; |
||||
TEST(isEqualAll(d, b)); |
||||
d /= a; |
||||
TEST(isEqualAll(d, c)); |
||||
|
||||
Dual<float, 1> e = b; |
||||
e /= a.value; |
||||
TEST(isEqualF(e.value, c.value)); |
||||
TEST(isEqual(e.derivative, b.derivative / a.value)); |
||||
|
||||
Dual<float, 1> f = a.value / b; |
||||
TEST(isEqualAll(f, 1.f / e)); |
||||
} |
||||
|
||||
{ |
||||
Dual<float, 1> blank; |
||||
TEST(isEqualF(blank.value, 0.f)); |
||||
TEST(isEqualF(blank.derivative(0), 0.f)); |
||||
} |
||||
|
||||
{ |
||||
// sqrt
|
||||
TEST(isEqualF(sqrt(a).value, sqrt(a.value))); |
||||
TEST(isEqualF(sqrt(a).derivative(0), 1.f / sqrt(12.f))); |
||||
} |
||||
|
||||
{ |
||||
// abs
|
||||
TEST(isEqualAll(a, abs(-a))); |
||||
TEST(!isEqualAll(-a, abs(a))); |
||||
TEST(isEqualAll(-a, -abs(a))); |
||||
} |
||||
|
||||
{ |
||||
// ceil
|
||||
Dual<float, 1> c(1.5, 0); |
||||
TEST(isEqualF(ceil(c).value, ceil(c.value))); |
||||
TEST(isEqualF(ceil(c).derivative(0), 0.f)); |
||||
} |
||||
|
||||
{ |
||||
// floor
|
||||
Dual<float, 1> c(1.5, 0); |
||||
TEST(isEqualF(floor(c).value, floor(c.value))); |
||||
TEST(isEqualF(floor(c).derivative(0), 0.f)); |
||||
} |
||||
|
||||
{ |
||||
// fmod
|
||||
TEST(isEqualF(fmod(a, 0.8f).value, fmod(a.value, 0.8f))); |
||||
TEST(isEqual(fmod(a, 0.8f).derivative, a.derivative)); |
||||
} |
||||
|
||||
{ |
||||
// max/min
|
||||
TEST(isEqualAll(b, max(a, b))); |
||||
TEST(isEqualAll(a, min(a, b))); |
||||
} |
||||
|
||||
{ |
||||
// isnan
|
||||
TEST(!IsNan(a)); |
||||
Dual<float, 1> c(sqrt(-1.f), 0); |
||||
TEST(IsNan(c)); |
||||
} |
||||
|
||||
{ |
||||
// isfinite/isinf
|
||||
TEST(IsFinite(a)); |
||||
TEST(!IsInf(a)); |
||||
Dual<float, 1> c(sqrt(-1.f), 0); |
||||
TEST(!IsFinite(c)); |
||||
TEST(!IsInf(c)); |
||||
Dual<float, 1> d(INFINITY, 0); |
||||
TEST(!IsFinite(d)); |
||||
TEST(IsInf(d)); |
||||
} |
||||
|
||||
{ |
||||
// sin/cos/tan
|
||||
TEST(isEqualF(sin(a).value, sin(a.value))); |
||||
TEST(isEqualF(sin(a).derivative(0), cos(a.value))); // sin'(x) = cos(x)
|
||||
|
||||
TEST(isEqualF(cos(a).value, cos(a.value))); |
||||
TEST(isEqualF(cos(a).derivative(0), -sin(a.value))); // cos'(x) = -sin(x)
|
||||
|
||||
TEST(isEqualF(tan(a).value, tan(a.value))); |
||||
TEST(isEqualF(tan(a).derivative(0), 1.f + tan(a.value)*tan(a.value))); // tan'(x) = 1 + tan^2(x)
|
||||
} |
||||
|
||||
{ |
||||
// asin/acos/atan
|
||||
Dual<float, 1> c(0.3f, 0); |
||||
TEST(isEqualF(asin(c).value, asin(c.value))); |
||||
TEST(isEqualF(asin(c).derivative(0), 1.f / sqrt(1.f - 0.3f * 0.3f))); // asin'(x) = 1/sqrt(1-x^2)
|
||||
|
||||
TEST(isEqualF(acos(c).value, acos(c.value))); |
||||
TEST(isEqualF(acos(c).derivative(0), -1.f / sqrt(1.f - 0.3f * 0.3f))); // acos'(x) = -1/sqrt(1-x^2)
|
||||
|
||||
TEST(isEqualF(atan(c).value, atan(c.value))); |
||||
TEST(isEqualF(atan(c).derivative(0), 1.f / (1.f + 0.3f * 0.3f))); // tan'(x) = 1 + x^2
|
||||
} |
||||
|
||||
{ |
||||
// atan2
|
||||
TEST(isEqualF(atan2(a, b).value, atan2(a.value, b.value))); |
||||
TEST(isEqualAll(atan2(a, Dual<float, 1>(b.value)), atan(a / b.value))); // atan2'(y, x) = atan'(y/x)
|
||||
} |
||||
|
||||
{ |
||||
// partial derivatives
|
||||
// function is f(x,y,z) = x^2 + 2xy + 3y^2 + z, we need with respect to d/dx and d/dy at the point (0.5, -0.8, 2)
|
||||
|
||||
using D = Dual<float, 2>; |
||||
|
||||
// set our starting point, requesting partial derivatives of x and y in column 0 and 1
|
||||
Vector3<D> dualPoint(D(0.5f, 0), D(-0.8f, 1), D(2.f)); |
||||
|
||||
Dual<float, 2> dualResult = testFunction(dualPoint); |
||||
|
||||
// compare to a numerical derivative:
|
||||
Vector<float, 3> floatPoint = collectReals(dualPoint); |
||||
float floatResult = testFunction(floatPoint); |
||||
|
||||
float h = 0.0001f; |
||||
Vector<float, 3> floatPoint_plusDX = floatPoint; |
||||
floatPoint_plusDX(0) += h; |
||||
float floatResult_plusDX = testFunction(floatPoint_plusDX); |
||||
|
||||
Vector<float, 3> floatPoint_plusDY = floatPoint; |
||||
floatPoint_plusDY(1) += h; |
||||
float floatResult_plusDY = testFunction(floatPoint_plusDY); |
||||
|
||||
Vector2f numerical_derivative((floatResult_plusDX - floatResult) / h, |
||||
(floatResult_plusDY - floatResult) / h); |
||||
|
||||
TEST(isEqualF(dualResult.value, floatResult, 0.0f)); |
||||
TEST(isEqual(dualResult.derivative, numerical_derivative, 1e-2f)); |
||||
|
||||
} |
||||
|
||||
{ |
||||
// jacobian
|
||||
// get residual of x/y/z with partial derivatives of rotation
|
||||
|
||||
Vector3f direct_error; |
||||
Matrix<float, 3, 4> numerical_jacobian; |
||||
{ |
||||
Vector3f positionState(5, 6, 7); |
||||
Vector3f velocityState(-1, 0, 1); |
||||
Quaternionf velocityOrientation(0.2f, -0.1f, 0, 1); |
||||
Vector3f positionMeasurement(4.5f, 6.2f, 7.9f); |
||||
float dt = 0.1f; |
||||
|
||||
direct_error = positionError(positionState, |
||||
velocityState, |
||||
velocityOrientation, |
||||
positionMeasurement, |
||||
dt); |
||||
float h = 0.001f; |
||||
|
||||
for (size_t i = 0; i < 4; i++) { |
||||
Quaternion<float> h4 = velocityOrientation; |
||||
h4(i) += h; |
||||
numerical_jacobian.col(i) = (positionError(positionState, |
||||
velocityState, |
||||
h4, |
||||
positionMeasurement, |
||||
dt) |
||||
- direct_error) / h; |
||||
} |
||||
} |
||||
Vector3f auto_error; |
||||
Matrix<float, 3, 4> auto_jacobian; |
||||
{ |
||||
using D4 = Dual<float, 4>; |
||||
using Vector3d4 = Vector3<D4>; |
||||
Vector3d4 positionState(D4(5), D4(6), D4(7)); |
||||
Vector3d4 velocityState(D4(-1), D4(0), D4(1)); |
||||
|
||||
// request partial derivatives of velocity orientation
|
||||
// by setting these variables' derivatives in corresponding columns [0...3]
|
||||
Quaternion<D4> velocityOrientation(D4(0.2f, 0), D4(-0.1f, 1), D4(0, 2), D4(1, 3)); |
||||
|
||||
Vector3d4 positionMeasurement(D4(4.5f), D4(6.2f), D4(7.9f)); |
||||
D4 dt(0.1f); |
||||
|
||||
|
||||
Vector3d4 error = positionError(positionState, |
||||
velocityState, |
||||
velocityOrientation, |
||||
positionMeasurement, |
||||
dt); |
||||
auto_error = collectReals(error); |
||||
auto_jacobian = collectDerivatives(error); |
||||
} |
||||
TEST(isEqual(direct_error, auto_error, 0.0f)); |
||||
TEST(isEqual(numerical_jacobian, auto_jacobian, 1e-3f)); |
||||
|
||||
} |
||||
return 0; |
||||
} |
Loading…
Reference in new issue