1 changed files with 821 additions and 0 deletions
@ -0,0 +1,821 @@
@@ -0,0 +1,821 @@
|
||||
#! /usr/bin/env python |
||||
|
||||
from __future__ import print_function |
||||
|
||||
import argparse |
||||
import os |
||||
import matplotlib.pyplot as plt |
||||
import numpy as np |
||||
|
||||
from pyulog import * |
||||
|
||||
""" |
||||
Reads in IMU data from a static thermal calibration test and performs a curve fit of gyro, accel and baro bias vs temperature |
||||
Data can be gathered using the following sequence: |
||||
|
||||
1) Set the TC_A_ENABLE, TC_B_ENABLE and TC_G_ENABLE parameters to 0 to thermal compensation and reboot |
||||
2) Perform a gyro and accel cal |
||||
2) Set the SYS_LOGGER parameter to 1 to use the new system logger |
||||
3) Set the SDLOG_MODE parameter to 3 to enable logging of sensor data for calibration and power off |
||||
4) Cold soak the board for 30 minutes |
||||
5) Move to a warm dry environment. |
||||
6) Apply power for 45 minutes, keeping the board still. |
||||
7) Remove power and extract the .ulog file |
||||
8) Open a terminal window in the script file directory |
||||
9) Run the script file 'python process_sensor_caldata.py <full path name to .ulog file> |
||||
|
||||
Outputs thermal compensation parameters in a file named <inputfilename>.params which can be loaded onto the board using QGroundControl |
||||
Outputs summary plots in a pdf file named <inputfilename>.pdf |
||||
|
||||
""" |
||||
|
||||
parser = argparse.ArgumentParser(description='Analyse the sensor_gyro message data') |
||||
parser.add_argument('filename', metavar='file.ulg', help='ULog input file') |
||||
|
||||
def is_valid_directory(parser, arg): |
||||
if os.path.isdir(arg): |
||||
# Directory exists so return the directory |
||||
return arg |
||||
else: |
||||
parser.error('The directory {} does not exist'.format(arg)) |
||||
|
||||
args = parser.parse_args() |
||||
ulog_file_name = args.filename |
||||
|
||||
ulog = ULog(ulog_file_name, None) |
||||
data = ulog.data_list |
||||
|
||||
# define constants |
||||
gravity = 9.80665 |
||||
|
||||
# extract gyro data |
||||
sensor_instance = 0 |
||||
for d in data: |
||||
if d.name == 'sensor_gyro': |
||||
if sensor_instance == 0: |
||||
sensor_gyro_0 = d.data |
||||
print('found gyro 0 data') |
||||
if sensor_instance == 1: |
||||
sensor_gyro_1 = d.data |
||||
print('found gyro 1 data') |
||||
if sensor_instance == 2: |
||||
sensor_gyro_2 = d.data |
||||
print('found gyro 2 data') |
||||
sensor_instance = sensor_instance +1 |
||||
|
||||
# extract accel data |
||||
sensor_instance = 0 |
||||
for d in data: |
||||
if d.name == 'sensor_accel': |
||||
if sensor_instance == 0: |
||||
sensor_accel_0 = d.data |
||||
print('found accel 0 data') |
||||
if sensor_instance == 1: |
||||
sensor_accel_1 = d.data |
||||
print('found accel 1 data') |
||||
if sensor_instance == 2: |
||||
sensor_accel_2 = d.data |
||||
print('found accel 2 data') |
||||
sensor_instance = sensor_instance +1 |
||||
|
||||
# extract baro data |
||||
sensor_instance = 0 |
||||
for d in data: |
||||
if d.name == 'sensor_baro': |
||||
if sensor_instance == 0: |
||||
sensor_baro_0 = d.data |
||||
print('found baro 0 data') |
||||
if sensor_instance == 1: |
||||
sensor_baro_1 = d.data |
||||
print('found baro 1 data') |
||||
if sensor_instance == 2: |
||||
sensor_baro_2 = d.data |
||||
print('found baro 2 data') |
||||
sensor_instance = sensor_instance +1 |
||||
|
||||
# open file to save plots to PDF |
||||
from matplotlib.backends.backend_pdf import PdfPages |
||||
output_plot_filename = ulog_file_name + ".pdf" |
||||
pp = PdfPages(output_plot_filename) |
||||
|
||||
################################################################################# |
||||
|
||||
# define data dictionary of gyro 0 thermal correction parameters |
||||
gyro_0_params = { |
||||
'TC_G0_ID':0, |
||||
'TC_G0_TMIN':0.0, |
||||
'TC_G0_TMAX':0.0, |
||||
'TC_G0_TREF':0.0, |
||||
'TC_G0_X0_0':0.0, |
||||
'TC_G0_X1_0':0.0, |
||||
'TC_G0_X2_0':0.0, |
||||
'TC_G0_X3_0':0.0, |
||||
'TC_G0_X0_1':0.0, |
||||
'TC_G0_X1_1':0.0, |
||||
'TC_G0_X2_1':0.0, |
||||
'TC_G0_X3_1':0.0, |
||||
'TC_G0_X0_2':0.0, |
||||
'TC_G0_X1_2':0.0, |
||||
'TC_G0_X2_2':0.0, |
||||
'TC_G0_X3_2':0.0, |
||||
'TC_G0_SCL_0':1.0, |
||||
'TC_G0_SCL_1':1.0, |
||||
'TC_G0_SCL_2':1.0 |
||||
} |
||||
|
||||
# curve fit the data for gyro 0 corrections - note corrections have oppsite sign to sensor bias |
||||
gyro_0_params['TC_G0_ID'] = int(np.median(sensor_gyro_0['device_id'])) |
||||
|
||||
# find the min, max and reference temperature |
||||
gyro_0_params['TC_G0_TMIN'] = np.amin(sensor_gyro_0['temperature']) |
||||
gyro_0_params['TC_G0_TMAX'] = np.amax(sensor_gyro_0['temperature']) |
||||
gyro_0_params['TC_G0_TREF'] = 0.5 * (gyro_0_params['TC_G0_TMIN'] + gyro_0_params['TC_G0_TMAX']) |
||||
temp_rel = sensor_gyro_0['temperature'] - gyro_0_params['TC_G0_TREF'] |
||||
temp_rel_resample = np.linspace(gyro_0_params['TC_G0_TMIN']-gyro_0_params['TC_G0_TREF'], gyro_0_params['TC_G0_TMAX']-gyro_0_params['TC_G0_TREF'], 100) |
||||
temp_resample = temp_rel_resample + gyro_0_params['TC_G0_TREF'] |
||||
|
||||
# fit X axis |
||||
coef_gyro_0_x = np.polyfit(temp_rel,-sensor_gyro_0['x'],3) |
||||
gyro_0_params['TC_G0_X3_0'] = coef_gyro_0_x[0] |
||||
gyro_0_params['TC_G0_X2_0'] = coef_gyro_0_x[1] |
||||
gyro_0_params['TC_G0_X1_0'] = coef_gyro_0_x[2] |
||||
gyro_0_params['TC_G0_X0_0'] = coef_gyro_0_x[3] |
||||
fit_coef_gyro_0_x = np.poly1d(coef_gyro_0_x) |
||||
gyro_0_x_resample = fit_coef_gyro_0_x(temp_rel_resample) |
||||
|
||||
# fit Y axis |
||||
coef_gyro_0_y = np.polyfit(temp_rel,-sensor_gyro_0['y'],3) |
||||
gyro_0_params['TC_G0_X3_1'] = coef_gyro_0_y[0] |
||||
gyro_0_params['TC_G0_X2_1'] = coef_gyro_0_y[1] |
||||
gyro_0_params['TC_G0_X1_1'] = coef_gyro_0_y[2] |
||||
gyro_0_params['TC_G0_X0_1'] = coef_gyro_0_y[3] |
||||
fit_coef_gyro_0_y = np.poly1d(coef_gyro_0_y) |
||||
gyro_0_y_resample = fit_coef_gyro_0_y(temp_rel_resample) |
||||
|
||||
# fit Z axis |
||||
coef_gyro_0_z = np.polyfit(temp_rel,-sensor_gyro_0['z'],3) |
||||
gyro_0_params['TC_G0_X3_2'] = coef_gyro_0_z[0] |
||||
gyro_0_params['TC_G0_X2_2'] = coef_gyro_0_z[1] |
||||
gyro_0_params['TC_G0_X1_2'] = coef_gyro_0_z[2] |
||||
gyro_0_params['TC_G0_X0_2'] = coef_gyro_0_z[3] |
||||
fit_coef_gyro_0_z = np.poly1d(coef_gyro_0_z) |
||||
gyro_0_z_resample = fit_coef_gyro_0_z(temp_rel_resample) |
||||
|
||||
# gyro0 vs temperature |
||||
plt.figure(1,figsize=(20,13)) |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,1) |
||||
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['x'],'b') |
||||
plt.plot(temp_resample,-gyro_0_x_resample,'r') |
||||
plt.title('Gyro 0 Bias vs Temperature') |
||||
plt.ylabel('X bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,2) |
||||
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['y'],'b') |
||||
plt.plot(temp_resample,-gyro_0_y_resample,'r') |
||||
plt.ylabel('Y bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,3) |
||||
plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['z'],'b') |
||||
plt.plot(temp_resample,-gyro_0_z_resample,'r') |
||||
plt.ylabel('Z bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
pp.savefig() |
||||
|
||||
################################################################################# |
||||
|
||||
################################################################################# |
||||
|
||||
# define data dictionary of gyro 1 thermal correction parameters |
||||
gyro_1_params = { |
||||
'TC_G1_ID':0, |
||||
'TC_G1_TMIN':0.0, |
||||
'TC_G1_TMAX':0.0, |
||||
'TC_G1_TREF':0.0, |
||||
'TC_G1_X0_0':0.0, |
||||
'TC_G1_X1_0':0.0, |
||||
'TC_G1_X2_0':0.0, |
||||
'TC_G1_X3_0':0.0, |
||||
'TC_G1_X0_1':0.0, |
||||
'TC_G1_X1_1':0.0, |
||||
'TC_G1_X2_1':0.0, |
||||
'TC_G1_X3_1':0.0, |
||||
'TC_G1_X0_2':0.0, |
||||
'TC_G1_X1_2':0.0, |
||||
'TC_G1_X2_2':0.0, |
||||
'TC_G1_X3_2':0.0, |
||||
'TC_G1_SCL_0':1.0, |
||||
'TC_G1_SCL_1':1.0, |
||||
'TC_G1_SCL_2':1.0 |
||||
} |
||||
|
||||
# curve fit the data for gyro 1 corrections - note corrections have oppsite sign to sensor bias |
||||
gyro_1_params['TC_G1_ID'] = int(np.median(sensor_gyro_1['device_id'])) |
||||
|
||||
# find the min, max and reference temperature |
||||
gyro_1_params['TC_G1_TMIN'] = np.amin(sensor_gyro_1['temperature']) |
||||
gyro_1_params['TC_G1_TMAX'] = np.amax(sensor_gyro_1['temperature']) |
||||
gyro_1_params['TC_G1_TREF'] = 0.5 * (gyro_1_params['TC_G1_TMIN'] + gyro_1_params['TC_G1_TMAX']) |
||||
temp_rel = sensor_gyro_1['temperature'] - gyro_1_params['TC_G1_TREF'] |
||||
temp_rel_resample = np.linspace(gyro_1_params['TC_G1_TMIN']-gyro_1_params['TC_G1_TREF'], gyro_1_params['TC_G1_TMAX']-gyro_1_params['TC_G1_TREF'], 100) |
||||
temp_resample = temp_rel_resample + gyro_1_params['TC_G1_TREF'] |
||||
|
||||
# fit X axis |
||||
coef_gyro_1_x = np.polyfit(temp_rel,-sensor_gyro_1['x'],3) |
||||
gyro_1_params['TC_G1_X3_0'] = coef_gyro_1_x[0] |
||||
gyro_1_params['TC_G1_X2_0'] = coef_gyro_1_x[1] |
||||
gyro_1_params['TC_G1_X1_0'] = coef_gyro_1_x[2] |
||||
gyro_1_params['TC_G1_X0_0'] = coef_gyro_1_x[3] |
||||
fit_coef_gyro_1_x = np.poly1d(coef_gyro_1_x) |
||||
gyro_1_x_resample = fit_coef_gyro_1_x(temp_rel_resample) |
||||
|
||||
# fit Y axis |
||||
coef_gyro_1_y = np.polyfit(temp_rel,-sensor_gyro_1['y'],3) |
||||
gyro_1_params['TC_G1_X3_1'] = coef_gyro_1_y[0] |
||||
gyro_1_params['TC_G1_X2_1'] = coef_gyro_1_y[1] |
||||
gyro_1_params['TC_G1_X1_1'] = coef_gyro_1_y[2] |
||||
gyro_1_params['TC_G1_X0_1'] = coef_gyro_1_y[3] |
||||
fit_coef_gyro_1_y = np.poly1d(coef_gyro_1_y) |
||||
gyro_1_y_resample = fit_coef_gyro_1_y(temp_rel_resample) |
||||
|
||||
# fit Z axis |
||||
coef_gyro_1_z = np.polyfit(temp_rel,-sensor_gyro_1['z'],3) |
||||
gyro_1_params['TC_G1_X3_2'] = coef_gyro_1_z[0] |
||||
gyro_1_params['TC_G1_X2_2'] = coef_gyro_1_z[1] |
||||
gyro_1_params['TC_G1_X1_2'] = coef_gyro_1_z[2] |
||||
gyro_1_params['TC_G1_X0_2'] = coef_gyro_1_z[3] |
||||
fit_coef_gyro_1_z = np.poly1d(coef_gyro_1_z) |
||||
gyro_1_z_resample = fit_coef_gyro_1_z(temp_rel_resample) |
||||
|
||||
# gyro1 vs temperature |
||||
plt.figure(2,figsize=(20,13)) |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,1) |
||||
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['x'],'b') |
||||
plt.plot(temp_resample,-gyro_1_x_resample,'r') |
||||
plt.title('Gyro 1 Bias vs Temperature') |
||||
plt.ylabel('X bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,2) |
||||
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['y'],'b') |
||||
plt.plot(temp_resample,-gyro_1_y_resample,'r') |
||||
plt.ylabel('Y bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,3) |
||||
plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['z'],'b') |
||||
plt.plot(temp_resample,-gyro_1_z_resample,'r') |
||||
plt.ylabel('Z bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
pp.savefig() |
||||
|
||||
################################################################################# |
||||
|
||||
################################################################################# |
||||
|
||||
# define data dictionary of gyro 2 thermal correction parameters |
||||
gyro_2_params = { |
||||
'TC_G2_ID':0, |
||||
'TC_G2_TMIN':0.0, |
||||
'TC_G2_TMAX':0.0, |
||||
'TC_G2_TREF':0.0, |
||||
'TC_G2_X0_0':0.0, |
||||
'TC_G2_X1_0':0.0, |
||||
'TC_G2_X2_0':0.0, |
||||
'TC_G2_X3_0':0.0, |
||||
'TC_G2_X0_1':0.0, |
||||
'TC_G2_X1_1':0.0, |
||||
'TC_G2_X2_1':0.0, |
||||
'TC_G2_X3_1':0.0, |
||||
'TC_G2_X0_2':0.0, |
||||
'TC_G2_X1_2':0.0, |
||||
'TC_G2_X2_2':0.0, |
||||
'TC_G2_X3_2':0.0, |
||||
'TC_G2_SCL_0':1.0, |
||||
'TC_G2_SCL_1':1.0, |
||||
'TC_G2_SCL_2':1.0 |
||||
} |
||||
|
||||
# curve fit the data for gyro 2 corrections - note corrections have oppsite sign to sensor bias |
||||
gyro_2_params['TC_G2_ID'] = int(np.median(sensor_gyro_2['device_id'])) |
||||
|
||||
# find the min, max and reference temperature |
||||
gyro_2_params['TC_G2_TMIN'] = np.amin(sensor_gyro_2['temperature']) |
||||
gyro_2_params['TC_G2_TMAX'] = np.amax(sensor_gyro_2['temperature']) |
||||
gyro_2_params['TC_G2_TREF'] = 0.5 * (gyro_2_params['TC_G2_TMIN'] + gyro_2_params['TC_G2_TMAX']) |
||||
temp_rel = sensor_gyro_2['temperature'] - gyro_2_params['TC_G2_TREF'] |
||||
temp_rel_resample = np.linspace(gyro_2_params['TC_G2_TMIN']-gyro_2_params['TC_G2_TREF'], gyro_2_params['TC_G2_TMAX']-gyro_2_params['TC_G2_TREF'], 100) |
||||
temp_resample = temp_rel_resample + gyro_2_params['TC_G2_TREF'] |
||||
|
||||
# fit X axis |
||||
coef_gyro_2_x = np.polyfit(temp_rel,-sensor_gyro_2['x'],3) |
||||
gyro_2_params['TC_G2_X3_0'] = coef_gyro_2_x[0] |
||||
gyro_2_params['TC_G2_X2_0'] = coef_gyro_2_x[1] |
||||
gyro_2_params['TC_G2_X1_0'] = coef_gyro_2_x[2] |
||||
gyro_2_params['TC_G2_X0_0'] = coef_gyro_2_x[3] |
||||
fit_coef_gyro_2_x = np.poly1d(coef_gyro_2_x) |
||||
gyro_2_x_resample = fit_coef_gyro_2_x(temp_rel_resample) |
||||
|
||||
# fit Y axis |
||||
coef_gyro_2_y = np.polyfit(temp_rel,-sensor_gyro_2['y'],3) |
||||
gyro_2_params['TC_G2_X3_1'] = coef_gyro_2_y[0] |
||||
gyro_2_params['TC_G2_X2_1'] = coef_gyro_2_y[1] |
||||
gyro_2_params['TC_G2_X1_1'] = coef_gyro_2_y[2] |
||||
gyro_2_params['TC_G2_X0_1'] = coef_gyro_2_y[3] |
||||
fit_coef_gyro_2_y = np.poly1d(coef_gyro_2_y) |
||||
gyro_2_y_resample = fit_coef_gyro_2_y(temp_rel_resample) |
||||
|
||||
# fit Z axis |
||||
coef_gyro_2_z = np.polyfit(temp_rel,-sensor_gyro_2['z'],3) |
||||
gyro_2_params['TC_G2_X3_2'] = coef_gyro_2_z[0] |
||||
gyro_2_params['TC_G2_X2_2'] = coef_gyro_2_z[1] |
||||
gyro_2_params['TC_G2_X1_2'] = coef_gyro_2_z[2] |
||||
gyro_2_params['TC_G2_X0_2'] = coef_gyro_2_z[3] |
||||
fit_coef_gyro_2_z = np.poly1d(coef_gyro_2_z) |
||||
gyro_2_z_resample = fit_coef_gyro_2_z(temp_rel_resample) |
||||
|
||||
# gyro2 vs temperature |
||||
plt.figure(3,figsize=(20,13)) |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,1) |
||||
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['x'],'b') |
||||
plt.plot(temp_resample,-gyro_2_x_resample,'r') |
||||
plt.title('Gyro 2 Bias vs Temperature') |
||||
plt.ylabel('X bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,2) |
||||
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['y'],'b') |
||||
plt.plot(temp_resample,-gyro_2_y_resample,'r') |
||||
plt.ylabel('Y bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,3) |
||||
plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['z'],'b') |
||||
plt.plot(temp_resample,-gyro_2_z_resample,'r') |
||||
plt.ylabel('Z bias (rad/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
pp.savefig() |
||||
|
||||
################################################################################# |
||||
|
||||
################################################################################# |
||||
|
||||
# define data dictionary of accel 0 thermal correction parameters |
||||
accel_0_params = { |
||||
'TC_A0_ID':0, |
||||
'TC_A0_TMIN':0.0, |
||||
'TC_A0_TMAX':0.0, |
||||
'TC_A0_TREF':0.0, |
||||
'TC_A0_X0_0':0.0, |
||||
'TC_A0_X1_0':0.0, |
||||
'TC_A0_X2_0':0.0, |
||||
'TC_A0_X3_0':0.0, |
||||
'TC_A0_X0_1':0.0, |
||||
'TC_A0_X1_1':0.0, |
||||
'TC_A0_X2_1':0.0, |
||||
'TC_A0_X3_1':0.0, |
||||
'TC_A0_X0_2':0.0, |
||||
'TC_A0_X1_2':0.0, |
||||
'TC_A0_X2_2':0.0, |
||||
'TC_A0_X3_2':0.0, |
||||
'TC_A0_SCL_0':1.0, |
||||
'TC_A0_SCL_1':1.0, |
||||
'TC_A0_SCL_2':1.0 |
||||
} |
||||
|
||||
# curve fit the data for accel 0 corrections - note corrections have oppsite sign to sensor bias |
||||
accel_0_params['TC_A0_ID'] = int(np.median(sensor_accel_0['device_id'])) |
||||
|
||||
# find the min, max and reference temperature |
||||
accel_0_params['TC_A0_TMIN'] = np.amin(sensor_accel_0['temperature']) |
||||
accel_0_params['TC_A0_TMAX'] = np.amax(sensor_accel_0['temperature']) |
||||
accel_0_params['TC_A0_TREF'] = 0.5 * (accel_0_params['TC_A0_TMIN'] + accel_0_params['TC_A0_TMAX']) |
||||
temp_rel = sensor_accel_0['temperature'] - accel_0_params['TC_A0_TREF'] |
||||
temp_rel_resample = np.linspace(accel_0_params['TC_A0_TMIN']-accel_0_params['TC_A0_TREF'], accel_0_params['TC_A0_TMAX']-accel_0_params['TC_A0_TREF'], 100) |
||||
temp_resample = temp_rel_resample + accel_0_params['TC_A0_TREF'] |
||||
|
||||
# fit X axis |
||||
correction_x = np.median(sensor_accel_0['x'])-sensor_accel_0['x'] |
||||
coef_accel_0_x = np.polyfit(temp_rel,correction_x,3) |
||||
accel_0_params['TC_A0_X3_0'] = coef_accel_0_x[0] |
||||
accel_0_params['TC_A0_X2_0'] = coef_accel_0_x[1] |
||||
accel_0_params['TC_A0_X1_0'] = coef_accel_0_x[2] |
||||
accel_0_params['TC_A0_X0_0'] = coef_accel_0_x[3] |
||||
fit_coef_accel_0_x = np.poly1d(coef_accel_0_x) |
||||
correction_x_resample = fit_coef_accel_0_x(temp_rel_resample) |
||||
|
||||
# fit Y axis |
||||
correction_y = np.median(sensor_accel_0['y'])-sensor_accel_0['y'] |
||||
coef_accel_0_y = np.polyfit(temp_rel,correction_y,3) |
||||
accel_0_params['TC_A0_X3_1'] = coef_accel_0_y[0] |
||||
accel_0_params['TC_A0_X2_1'] = coef_accel_0_y[1] |
||||
accel_0_params['TC_A0_X1_1'] = coef_accel_0_y[2] |
||||
accel_0_params['TC_A0_X0_1'] = coef_accel_0_y[3] |
||||
fit_coef_accel_0_y = np.poly1d(coef_accel_0_y) |
||||
correction_y_resample = fit_coef_accel_0_y(temp_rel_resample) |
||||
|
||||
# fit Z axis |
||||
correction_z = np.median(sensor_accel_0['z'])-sensor_accel_0['z'] |
||||
coef_accel_0_z = np.polyfit(temp_rel,correction_z,3) |
||||
accel_0_params['TC_A0_X3_2'] = coef_accel_0_z[0] |
||||
accel_0_params['TC_A0_X2_2'] = coef_accel_0_z[1] |
||||
accel_0_params['TC_A0_X1_2'] = coef_accel_0_z[2] |
||||
accel_0_params['TC_A0_X0_2'] = coef_accel_0_z[3] |
||||
fit_coef_accel_0_z = np.poly1d(coef_accel_0_z) |
||||
correction_z_resample = fit_coef_accel_0_z(temp_rel_resample) |
||||
|
||||
# accel 0 vs temperature |
||||
plt.figure(4,figsize=(20,13)) |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,1) |
||||
plt.plot(sensor_accel_0['temperature'],-correction_x,'b') |
||||
plt.plot(temp_resample,-correction_x_resample,'r') |
||||
plt.title('Accel 0 Bias vs Temperature') |
||||
plt.ylabel('X bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,2) |
||||
plt.plot(sensor_accel_0['temperature'],-correction_y,'b') |
||||
plt.plot(temp_resample,-correction_y_resample,'r') |
||||
plt.ylabel('Y bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,3) |
||||
plt.plot(sensor_accel_0['temperature'],-correction_z,'b') |
||||
plt.plot(temp_resample,-correction_z_resample,'r') |
||||
plt.ylabel('Z bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
pp.savefig() |
||||
|
||||
################################################################################# |
||||
|
||||
################################################################################# |
||||
|
||||
# define data dictionary of accel 1 thermal correction parameters |
||||
accel_1_params = { |
||||
'TC_A1_ID':0, |
||||
'TC_A1_TMIN':0.0, |
||||
'TC_A1_TMAX':0.0, |
||||
'TC_A1_TREF':0.0, |
||||
'TC_A1_X0_0':0.0, |
||||
'TC_A1_X1_0':0.0, |
||||
'TC_A1_X2_0':0.0, |
||||
'TC_A1_X3_0':0.0, |
||||
'TC_A1_X0_1':0.0, |
||||
'TC_A1_X1_1':0.0, |
||||
'TC_A1_X2_1':0.0, |
||||
'TC_A1_X3_1':0.0, |
||||
'TC_A1_X0_2':0.0, |
||||
'TC_A1_X1_2':0.0, |
||||
'TC_A1_X2_2':0.0, |
||||
'TC_A1_X3_2':0.0, |
||||
'TC_A1_SCL_0':1.0, |
||||
'TC_A1_SCL_1':1.0, |
||||
'TC_A1_SCL_2':1.0 |
||||
} |
||||
|
||||
# curve fit the data for accel 1 corrections - note corrections have oppsite sign to sensor bias |
||||
accel_1_params['TC_A1_ID'] = int(np.median(sensor_accel_1['device_id'])) |
||||
|
||||
# find the min, max and reference temperature |
||||
accel_1_params['TC_A1_TMIN'] = np.amin(sensor_accel_1['temperature']) |
||||
accel_1_params['TC_A1_TMAX'] = np.amax(sensor_accel_1['temperature']) |
||||
accel_1_params['TC_A1_TREF'] = 0.5 * (accel_1_params['TC_A1_TMIN'] + accel_1_params['TC_A1_TMAX']) |
||||
temp_rel = sensor_accel_1['temperature'] - accel_1_params['TC_A1_TREF'] |
||||
temp_rel_resample = np.linspace(accel_1_params['TC_A1_TMIN']-accel_1_params['TC_A1_TREF'], accel_1_params['TC_A1_TMAX']-accel_1_params['TC_A1_TREF'], 100) |
||||
temp_resample = temp_rel_resample + accel_1_params['TC_A1_TREF'] |
||||
|
||||
# fit X axis |
||||
correction_x = np.median(sensor_accel_1['x'])-sensor_accel_1['x'] |
||||
coef_accel_1_x = np.polyfit(temp_rel,correction_x,3) |
||||
accel_1_params['TC_A1_X3_0'] = coef_accel_1_x[0] |
||||
accel_1_params['TC_A1_X2_0'] = coef_accel_1_x[1] |
||||
accel_1_params['TC_A1_X1_0'] = coef_accel_1_x[2] |
||||
accel_1_params['TC_A1_X0_0'] = coef_accel_1_x[3] |
||||
fit_coef_accel_1_x = np.poly1d(coef_accel_1_x) |
||||
correction_x_resample = fit_coef_accel_1_x(temp_rel_resample) |
||||
|
||||
# fit Y axis |
||||
correction_y = np.median(sensor_accel_1['y'])-sensor_accel_1['y'] |
||||
coef_accel_1_y = np.polyfit(temp_rel,correction_y,3) |
||||
accel_1_params['TC_A1_X3_1'] = coef_accel_1_y[0] |
||||
accel_1_params['TC_A1_X2_1'] = coef_accel_1_y[1] |
||||
accel_1_params['TC_A1_X1_1'] = coef_accel_1_y[2] |
||||
accel_1_params['TC_A1_X0_1'] = coef_accel_1_y[3] |
||||
fit_coef_accel_1_y = np.poly1d(coef_accel_1_y) |
||||
correction_y_resample = fit_coef_accel_1_y(temp_rel_resample) |
||||
|
||||
# fit Z axis |
||||
correction_z = np.median(sensor_accel_1['z'])-(sensor_accel_1['z']) |
||||
coef_accel_1_z = np.polyfit(temp_rel,correction_z,3) |
||||
accel_1_params['TC_A1_X3_2'] = coef_accel_1_z[0] |
||||
accel_1_params['TC_A1_X2_2'] = coef_accel_1_z[1] |
||||
accel_1_params['TC_A1_X1_2'] = coef_accel_1_z[2] |
||||
accel_1_params['TC_A1_X0_2'] = coef_accel_1_z[3] |
||||
fit_coef_accel_1_z = np.poly1d(coef_accel_1_z) |
||||
correction_z_resample = fit_coef_accel_1_z(temp_rel_resample) |
||||
|
||||
# accel 1 vs temperature |
||||
plt.figure(5,figsize=(20,13)) |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,1) |
||||
plt.plot(sensor_accel_1['temperature'],-correction_x,'b') |
||||
plt.plot(temp_resample,-correction_x_resample,'r') |
||||
plt.title('Accel 1 Bias vs Temperature') |
||||
plt.ylabel('X bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,2) |
||||
plt.plot(sensor_accel_1['temperature'],-correction_y,'b') |
||||
plt.plot(temp_resample,-correction_y_resample,'r') |
||||
plt.ylabel('Y bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,3) |
||||
plt.plot(sensor_accel_1['temperature'],-correction_z,'b') |
||||
plt.plot(temp_resample,-correction_z_resample,'r') |
||||
plt.ylabel('Z bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
pp.savefig() |
||||
|
||||
################################################################################# |
||||
|
||||
################################################################################# |
||||
|
||||
# define data dictionary of accel 2 thermal correction parameters |
||||
accel_2_params = { |
||||
'TC_A2_ID':0, |
||||
'TC_A2_TMIN':0.0, |
||||
'TC_A2_TMAX':0.0, |
||||
'TC_A2_TREF':0.0, |
||||
'TC_A2_X0_0':0.0, |
||||
'TC_A2_X1_0':0.0, |
||||
'TC_A2_X2_0':0.0, |
||||
'TC_A2_X3_0':0.0, |
||||
'TC_A2_X0_1':0.0, |
||||
'TC_A2_X1_1':0.0, |
||||
'TC_A2_X2_1':0.0, |
||||
'TC_A2_X3_1':0.0, |
||||
'TC_A2_X0_2':0.0, |
||||
'TC_A2_X1_2':0.0, |
||||
'TC_A2_X2_2':0.0, |
||||
'TC_A2_X3_2':0.0, |
||||
'TC_A2_SCL_0':1.0, |
||||
'TC_A2_SCL_1':1.0, |
||||
'TC_A2_SCL_2':1.0 |
||||
} |
||||
|
||||
# curve fit the data for accel 2 corrections - note corrections have oppsite sign to sensor bias |
||||
accel_2_params['TC_A2_ID'] = int(np.median(sensor_accel_2['device_id'])) |
||||
|
||||
# find the min, max and reference temperature |
||||
accel_2_params['TC_A2_TMIN'] = np.amin(sensor_accel_2['temperature']) |
||||
accel_2_params['TC_A2_TMAX'] = np.amax(sensor_accel_2['temperature']) |
||||
accel_2_params['TC_A2_TREF'] = 0.5 * (accel_2_params['TC_A2_TMIN'] + accel_2_params['TC_A2_TMAX']) |
||||
temp_rel = sensor_accel_2['temperature'] - accel_2_params['TC_A2_TREF'] |
||||
temp_rel_resample = np.linspace(accel_2_params['TC_A2_TMIN']-accel_2_params['TC_A2_TREF'], accel_2_params['TC_A2_TMAX']-accel_2_params['TC_A2_TREF'], 100) |
||||
temp_resample = temp_rel_resample + accel_2_params['TC_A2_TREF'] |
||||
|
||||
# fit X axis |
||||
correction_x = np.median(sensor_accel_2['x'])-sensor_accel_2['x'] |
||||
coef_accel_2_x = np.polyfit(temp_rel,correction_x,3) |
||||
accel_2_params['TC_A2_X3_0'] = coef_accel_2_x[0] |
||||
accel_2_params['TC_A2_X2_0'] = coef_accel_2_x[1] |
||||
accel_2_params['TC_A2_X1_0'] = coef_accel_2_x[2] |
||||
accel_2_params['TC_A2_X0_0'] = coef_accel_2_x[3] |
||||
fit_coef_accel_2_x = np.poly1d(coef_accel_2_x) |
||||
correction_x_resample = fit_coef_accel_2_x(temp_rel_resample) |
||||
|
||||
# fit Y axis |
||||
correction_y = np.median(sensor_accel_2['y'])-sensor_accel_2['y'] |
||||
coef_accel_2_y = np.polyfit(temp_rel,correction_y,3) |
||||
accel_2_params['TC_A2_X3_1'] = coef_accel_2_y[0] |
||||
accel_2_params['TC_A2_X2_1'] = coef_accel_2_y[1] |
||||
accel_2_params['TC_A2_X1_1'] = coef_accel_2_y[2] |
||||
accel_2_params['TC_A2_X0_1'] = coef_accel_2_y[3] |
||||
fit_coef_accel_2_y = np.poly1d(coef_accel_2_y) |
||||
correction_y_resample = fit_coef_accel_2_y(temp_rel_resample) |
||||
|
||||
# fit Z axis |
||||
correction_z = np.median(sensor_accel_2['z'])-sensor_accel_2['z'] |
||||
coef_accel_2_z = np.polyfit(temp_rel,correction_z,3) |
||||
accel_2_params['TC_A2_X3_2'] = coef_accel_2_z[0] |
||||
accel_2_params['TC_A2_X2_2'] = coef_accel_2_z[1] |
||||
accel_2_params['TC_A2_X1_2'] = coef_accel_2_z[2] |
||||
accel_2_params['TC_A2_X0_2'] = coef_accel_2_z[3] |
||||
fit_coef_accel_2_z = np.poly1d(coef_accel_2_z) |
||||
correction_z_resample = fit_coef_accel_2_z(temp_rel_resample) |
||||
|
||||
# accel 2 vs temperature |
||||
plt.figure(6,figsize=(20,13)) |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,1) |
||||
plt.plot(sensor_accel_2['temperature'],-correction_x,'b') |
||||
plt.plot(temp_resample,-correction_x_resample,'r') |
||||
plt.title('Accel 2 Bias vs Temperature') |
||||
plt.ylabel('X bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,2) |
||||
plt.plot(sensor_accel_2['temperature'],-correction_y,'b') |
||||
plt.plot(temp_resample,-correction_y_resample,'r') |
||||
plt.ylabel('Y bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
# draw plots |
||||
plt.subplot(3,1,3) |
||||
plt.plot(sensor_accel_2['temperature'],-correction_z,'b') |
||||
plt.plot(temp_resample,-correction_z_resample,'r') |
||||
plt.ylabel('Z bias (m/s/s)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
pp.savefig() |
||||
|
||||
################################################################################# |
||||
|
||||
################################################################################# |
||||
|
||||
# define data dictionary of baro 0 thermal correction parameters |
||||
baro_0_params = { |
||||
'TC_B0_ID':0, |
||||
'TC_B0_TMIN':0.0, |
||||
'TC_B0_TMAX':0.0, |
||||
'TC_B0_TREF':0.0, |
||||
'TC_B0_X0':0.0, |
||||
'TC_B0_X1':0.0, |
||||
'TC_B0_X2':0.0, |
||||
'TC_B0_X3':0.0, |
||||
'TC_B0_X4':0.0, |
||||
'TC_B0_X5':0.0, |
||||
'TC_B0_SCL':1.0, |
||||
} |
||||
|
||||
# curve fit the data for baro 0 corrections - note corrections have oppsite sign to sensor bias |
||||
baro_0_params['TC_B0_ID'] = int(np.median(sensor_baro_0['device_id'])) |
||||
|
||||
# find the min, max and reference temperature |
||||
baro_0_params['TC_B0_TMIN'] = np.amin(sensor_baro_0['temperature']) |
||||
baro_0_params['TC_B0_TMAX'] = np.amax(sensor_baro_0['temperature']) |
||||
baro_0_params['TC_B0_TREF'] = 0.5 * (baro_0_params['TC_B0_TMIN'] + baro_0_params['TC_B0_TMAX']) |
||||
temp_rel = sensor_baro_0['temperature'] - baro_0_params['TC_B0_TREF'] |
||||
temp_rel_resample = np.linspace(baro_0_params['TC_B0_TMIN']-baro_0_params['TC_B0_TREF'], baro_0_params['TC_B0_TMAX']-baro_0_params['TC_B0_TREF'], 100) |
||||
temp_resample = temp_rel_resample + baro_0_params['TC_B0_TREF'] |
||||
|
||||
# fit data |
||||
median_pressure =100*np.median(sensor_baro_0['pressure']); |
||||
coef_baro_0_x = np.polyfit(temp_rel,median_pressure-100*sensor_baro_0['pressure'],5) # convert from hPa to Pa |
||||
baro_0_params['TC_B0_X5'] = coef_baro_0_x[0] |
||||
baro_0_params['TC_B0_X4'] = coef_baro_0_x[1] |
||||
baro_0_params['TC_B0_X3'] = coef_baro_0_x[2] |
||||
baro_0_params['TC_B0_X2'] = coef_baro_0_x[3] |
||||
baro_0_params['TC_B0_X1'] = coef_baro_0_x[4] |
||||
baro_0_params['TC_B0_X0'] = coef_baro_0_x[5] |
||||
fit_coef_baro_0_x = np.poly1d(coef_baro_0_x) |
||||
baro_0_x_resample = fit_coef_baro_0_x(temp_rel_resample) |
||||
|
||||
# baro 0 vs temperature |
||||
plt.figure(7,figsize=(20,13)) |
||||
|
||||
# draw plots |
||||
plt.plot(sensor_baro_0['temperature'],100*sensor_baro_0['pressure']-median_pressure,'b') |
||||
plt.plot(temp_resample,-baro_0_x_resample,'r') |
||||
plt.title('Baro 0 Bias vs Temperature') |
||||
plt.ylabel('X bias (Pa)') |
||||
plt.xlabel('temperature (degC)') |
||||
plt.grid() |
||||
|
||||
pp.savefig() |
||||
|
||||
################################################################################# |
||||
|
||||
# close the pdf file |
||||
pp.close() |
||||
|
||||
# clase all figures |
||||
plt.close("all") |
||||
|
||||
# write correction parameters to file |
||||
test_results_filename = ulog_file_name + ".params" |
||||
file = open(test_results_filename,"w") |
||||
file.write("# Sensor thermal compensation parameters\n") |
||||
file.write("#\n") |
||||
file.write("# Vehicle-Id Component-Id Name Value Type\n") |
||||
|
||||
# accel 0 corrections |
||||
key_list_accel = list(accel_0_params.keys()) |
||||
key_list_accel.sort |
||||
for key in key_list_accel: |
||||
if key == 'TC_A0_ID': |
||||
type = "6" |
||||
else: |
||||
type = "9" |
||||
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_0_params[key])+"\t"+type+"\n") |
||||
|
||||
# accel 1 corrections |
||||
key_list_accel = list(accel_1_params.keys()) |
||||
key_list_accel.sort |
||||
for key in key_list_accel: |
||||
if key == 'TC_A1_ID': |
||||
type = "6" |
||||
else: |
||||
type = "9" |
||||
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_1_params[key])+"\t"+type+"\n") |
||||
|
||||
# accel 2 corrections |
||||
key_list_accel = list(accel_2_params.keys()) |
||||
key_list_accel.sort |
||||
for key in key_list_accel: |
||||
if key == 'TC_A2_ID': |
||||
type = "6" |
||||
else: |
||||
type = "9" |
||||
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_2_params[key])+"\t"+type+"\n") |
||||
|
||||
# baro 0 corrections |
||||
key_list_accel = list(baro_0_params.keys()) |
||||
key_list_accel.sort |
||||
for key in key_list_accel: |
||||
if key == 'TC_B0_ID': |
||||
type = "6" |
||||
else: |
||||
type = "9" |
||||
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_0_params[key])+"\t"+type+"\n") |
||||
|
||||
# gyro 0 corrections |
||||
key_list_gyro = list(gyro_0_params.keys()) |
||||
key_list_gyro.sort() |
||||
for key in key_list_gyro: |
||||
if key == 'TC_G0_ID': |
||||
type = "6" |
||||
else: |
||||
type = "9" |
||||
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_0_params[key])+"\t"+type+"\n") |
||||
|
||||
# gyro 1 corrections |
||||
key_list_gyro = list(gyro_1_params.keys()) |
||||
key_list_gyro.sort() |
||||
for key in key_list_gyro: |
||||
if key == 'TC_G1_ID': |
||||
type = "6" |
||||
else: |
||||
type = "9" |
||||
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_1_params[key])+"\t"+type+"\n") |
||||
|
||||
# gyro 2 corrections |
||||
key_list_gyro = list(gyro_2_params.keys()) |
||||
key_list_gyro.sort() |
||||
for key in key_list_gyro: |
||||
if key == 'TC_G2_ID': |
||||
type = "6" |
||||
else: |
||||
type = "9" |
||||
file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_2_params[key])+"\t"+type+"\n") |
||||
|
||||
file.close() |
||||
|
||||
print('Correction parameters written to ' + test_results_filename) |
||||
print('Plots saved to ' + output_plot_filename) |
Loading…
Reference in new issue