Browse Source
Implements a single state Kalman filter to estimate terrain vertical position relative to the NED origin.master
1 changed files with 148 additions and 0 deletions
@ -0,0 +1,148 @@
@@ -0,0 +1,148 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name ECL nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* @file terrain_estimator.cpp |
||||
* Function for fusing rangefinder measurements to estimate terrain vertical position/ |
||||
* |
||||
* @author Paul Riseborough <p_riseborough@live.com.au> |
||||
* |
||||
*/ |
||||
|
||||
#include "ekf.h" |
||||
#include "mathlib.h" |
||||
|
||||
bool Ekf::initHagl() |
||||
{ |
||||
// get most recent range measurement from buffer
|
||||
rangeSample latest_measurement = _range_buffer.get_newest(); |
||||
|
||||
if ((_time_last_imu - latest_measurement.time_us) < 2e5) { |
||||
// if we have a fresh measurement, use it to initialise the terrain estimator
|
||||
_terrain_vpos = _state.pos(2) + latest_measurement.rng; |
||||
// initialise state variance to variance of measurement
|
||||
_terrain_var = sq(_params.range_noise); |
||||
// success
|
||||
return true; |
||||
|
||||
} else if (!_in_air) { |
||||
// if on ground we assume a ground clearance
|
||||
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance; |
||||
// Use the ground clearance value as our uncertainty
|
||||
_terrain_var = sq(_params.rng_gnd_clearance); |
||||
// ths is a guess
|
||||
return false; |
||||
|
||||
} else { |
||||
// no information - cannot initialise
|
||||
return false; |
||||
} |
||||
} |
||||
|
||||
void Ekf::predictHagl() |
||||
{ |
||||
// predict the state variance growth
|
||||
// the state is the vertical position of the terrain underneath the vehicle
|
||||
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise); |
||||
|
||||
// limit the variance to prevent it becoming badly conditioned
|
||||
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f); |
||||
} |
||||
|
||||
void Ekf::fuseHagl() |
||||
{ |
||||
// If the vehicle is excessively tilted, do not try to fuse range finder observations
|
||||
if (_R_prev(2, 2) > 0.7071f) { |
||||
// get a height above ground measurement from the range finder assuming a flat earth
|
||||
float meas_hagl = _range_sample_delayed.rng * _R_prev(2, 2); |
||||
|
||||
// predict the hagl from the vehicle position and terrain height
|
||||
float pred_hagl = _terrain_vpos - _state.pos(2); |
||||
|
||||
// calculate the innovation
|
||||
_hagl_innov = pred_hagl - meas_hagl; |
||||
|
||||
// calculate the observation variance adding the variance of the vehicles own height uncertainty and factoring in the effect of tilt on measurement error
|
||||
float obs_variance = fmaxf(P[8][8], 0.0f) + sq(_params.range_noise / _R_prev(2, 2)); |
||||
|
||||
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion
|
||||
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance); |
||||
|
||||
// perform an innovation consistency check and only fuse data if it passes
|
||||
float gate_size = fmaxf(_params.range_innov_gate, 1.0f); |
||||
float test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var); |
||||
|
||||
if (test_ratio <= 1.0f) { |
||||
// calculate the Kalman gain
|
||||
float gain = obs_variance / _hagl_innov_var; |
||||
// correct the state
|
||||
_terrain_vpos -= gain * _hagl_innov; |
||||
// correct the variance
|
||||
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f); |
||||
// record last successful fusion time
|
||||
_time_last_hagl_fuse = _time_last_imu; |
||||
} |
||||
|
||||
|
||||
} else { |
||||
return; |
||||
} |
||||
} |
||||
|
||||
// return true if the estimate is fresh
|
||||
// return the estimated vertical position of the terrain relative to the NED origin
|
||||
bool Ekf::get_terrain_vert_pos(float *ret) |
||||
{ |
||||
memcpy(ret, &_terrain_vpos, sizeof(float)); |
||||
|
||||
// The height is useful if the uncertainty in terrain height is significantly smaller than than the estimated height above terrain
|
||||
bool accuracy_useful = (sqrtf(_terrain_var) < 0.2f * fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance)); |
||||
|
||||
if (_time_last_imu - _time_last_hagl_fuse < 1e6 || accuracy_useful) { |
||||
return true; |
||||
|
||||
} else { |
||||
return false; |
||||
} |
||||
} |
||||
|
||||
void Ekf::get_hagl_innov(float *hagl_innov) |
||||
{ |
||||
memcpy(hagl_innov, &_hagl_innov, sizeof(_hagl_innov)); |
||||
} |
||||
|
||||
|
||||
void Ekf::get_hagl_innov_var(float *hagl_innov_var) |
||||
{ |
||||
memcpy(hagl_innov_var, &_hagl_innov_var, sizeof(_hagl_innov_var)); |
||||
} |
Loading…
Reference in new issue