18 changed files with 1416 additions and 12 deletions
@ -0,0 +1,3 @@
@@ -0,0 +1,3 @@
|
||||
[submodule "matrix"] |
||||
path = matrix |
||||
url = https://github.com/PX4/Matrix |
@ -0,0 +1,16 @@
@@ -0,0 +1,16 @@
|
||||
language: cpp |
||||
sudo: required |
||||
compiler: g++ |
||||
|
||||
before_install: |
||||
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test |
||||
- sudo apt-get update -qq |
||||
|
||||
install: |
||||
- sudo apt-get install -qq g++-4.8 |
||||
- export CXX="g++-4.8" |
||||
|
||||
before_script: |
||||
- chmod +x build.sh |
||||
|
||||
script: ./build.sh |
@ -0,0 +1,72 @@
@@ -0,0 +1,72 @@
|
||||
############################################################################ |
||||
# |
||||
# Copyright (c) 2015 ECL Development Team. All rights reserved. |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions |
||||
# are met: |
||||
# |
||||
# 1. Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# 2. Redistributions in binary form must reproduce the above copyright |
||||
# notice, this list of conditions and the following disclaimer in |
||||
# the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# 3. Neither the name ECL nor the names of its contributors may be |
||||
# used to endorse or promote products derived from this software |
||||
# without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
# POSSIBILITY OF SUCH DAMAGE. |
||||
# |
||||
############################################################################ |
||||
|
||||
cmake_minimum_required(VERSION 2.8) |
||||
|
||||
project (ECL CXX) |
||||
set(CMAKE_BUILD_TYPE Release) |
||||
set(CMAKE_CURRENT_SOURCE_DIR ./) |
||||
set(CMAKE_CXX_FLAGS "-DPOSIX_SHARED") |
||||
set (EIGEN3_INCLUDE_DIR "/usr/local/include/eigen3/") |
||||
|
||||
IF( NOT EIGEN3_INCLUDE_DIR ) |
||||
MESSAGE( FATAL_ERROR "Please point the environment variable EIGEN3_INCLUDE_DIR to the include directory of your Eigen3 installation.") |
||||
ENDIF() |
||||
INCLUDE_DIRECTORIES ( "${EIGEN3_INCLUDE_DIR}" ) |
||||
|
||||
if( NOT EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../matrix/.git" ) |
||||
message( SEND_ERROR "The git submodules are not available. Please run |
||||
git submodule update --init --recursive" |
||||
) |
||||
endif() |
||||
|
||||
include_directories( |
||||
./ |
||||
../ |
||||
../matrix |
||||
EIGEN3_INCLUDE_DIR |
||||
) |
||||
set(SRCS |
||||
estimator_interface.cpp |
||||
ekf.cpp |
||||
ekf_helper.cpp |
||||
covariance.cpp |
||||
vel_pos_fusion.cpp |
||||
mag_fusion.cpp |
||||
gps_checks.cpp |
||||
control.cpp |
||||
geo.cpp |
||||
mathlib.cpp |
||||
) |
||||
add_definitions(-std=c++11) |
||||
add_library(ecl SHARED ${SRCS}) |
@ -0,0 +1,827 @@
@@ -0,0 +1,827 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (c) 2012-2014 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* @file geo.c |
||||
* |
||||
* Geo / math functions to perform geodesic calculations |
||||
* |
||||
* @author Thomas Gubler <thomasgubler@student.ethz.ch> |
||||
* @author Julian Oes <joes@student.ethz.ch> |
||||
* @author Lorenz Meier <lm@inf.ethz.ch> |
||||
* @author Anton Babushkin <anton.babushkin@me.com> |
||||
*/ |
||||
#ifdef POSIX_SHARED |
||||
#include <unistd.h> |
||||
#include <pthread.h> |
||||
#include <stdio.h> |
||||
#include <math.h> |
||||
#include <stdbool.h> |
||||
#include <string.h> |
||||
#include <float.h> |
||||
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (c) 2014 MAV GEO Library (MAVGEO). All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name MAVGEO nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* @file geo_mag_declination.c |
||||
* |
||||
* Calculation / lookup table for earth magnetic field declination. |
||||
* |
||||
* Lookup table from Scott Ferguson <scottfromscott@gmail.com> |
||||
* |
||||
* XXX Lookup table currently too coarse in resolution (only full degrees) |
||||
* and lat/lon res - needs extension medium term. |
||||
* |
||||
*/ |
||||
|
||||
#include "geo.h" |
||||
|
||||
/** set this always to the sampling in degrees for the table below */ |
||||
#define SAMPLING_RES 10.0f |
||||
#define SAMPLING_MIN_LAT -60.0f |
||||
#define SAMPLING_MAX_LAT 60.0f |
||||
#define SAMPLING_MIN_LON -180.0f |
||||
#define SAMPLING_MAX_LON 180.0f |
||||
|
||||
static const int8_t declination_table[13][37] = \
|
||||
{ |
||||
{ 46, 45, 44, 42, 41, 40, 38, 36, 33, 28, 23, 16, 10, 4, -1, -5, -9, -14, -19, -26, -33, -40, -48, -55, -61, -66, -71, -74, -75, -72, -61, -25, 22, 40, 45, 47, 46 }, |
||||
{ 30, 30, 30, 30, 29, 29, 29, 29, 27, 24, 18, 11, 3, -3, -9, -12, -15, -17, -21, -26, -32, -39, -45, -51, -55, -57, -56, -53, -44, -31, -14, 0, 13, 21, 26, 29, 30 }, |
||||
{ 21, 22, 22, 22, 22, 22, 22, 22, 21, 18, 13, 5, -3, -11, -17, -20, -21, -22, -23, -25, -29, -35, -40, -44, -45, -44, -40, -32, -22, -12, -3, 3, 9, 14, 18, 20, 21 }, |
||||
{ 16, 17, 17, 17, 17, 17, 16, 16, 16, 13, 8, 0, -9, -16, -21, -24, -25, -25, -23, -20, -21, -24, -28, -31, -31, -29, -24, -17, -9, -3, 0, 4, 7, 10, 13, 15, 16 }, |
||||
{ 12, 13, 13, 13, 13, 13, 12, 12, 11, 9, 3, -4, -12, -19, -23, -24, -24, -22, -17, -12, -9, -10, -13, -17, -18, -16, -13, -8, -3, 0, 1, 3, 6, 8, 10, 12, 12 }, |
||||
{ 10, 10, 10, 10, 10, 10, 10, 9, 9, 6, 0, -6, -14, -20, -22, -22, -19, -15, -10, -6, -2, -2, -4, -7, -8, -8, -7, -4, 0, 1, 1, 2, 4, 6, 8, 10, 10 }, |
||||
{ 9, 9, 9, 9, 9, 9, 8, 8, 7, 4, -1, -8, -15, -19, -20, -18, -14, -9, -5, -2, 0, 1, 0, -2, -3, -4, -3, -2, 0, 0, 0, 1, 3, 5, 7, 8, 9 }, |
||||
{ 8, 8, 8, 9, 9, 9, 8, 8, 6, 2, -3, -9, -15, -18, -17, -14, -10, -6, -2, 0, 1, 2, 2, 0, -1, -1, -2, -1, 0, 0, 0, 0, 1, 3, 5, 7, 8 }, |
||||
{ 8, 9, 9, 10, 10, 10, 10, 8, 5, 0, -5, -11, -15, -16, -15, -12, -8, -4, -1, 0, 2, 3, 2, 1, 0, 0, 0, 0, 0, -1, -2, -2, -1, 0, 3, 6, 8 }, |
||||
{ 6, 9, 10, 11, 12, 12, 11, 9, 5, 0, -7, -12, -15, -15, -13, -10, -7, -3, 0, 1, 2, 3, 3, 3, 2, 1, 0, 0, -1, -3, -4, -5, -5, -2, 0, 3, 6 }, |
||||
{ 5, 8, 11, 13, 15, 15, 14, 11, 5, -1, -9, -14, -17, -16, -14, -11, -7, -3, 0, 1, 3, 4, 5, 5, 5, 4, 3, 1, -1, -4, -7, -8, -8, -6, -2, 1, 5 }, |
||||
{ 4, 8, 12, 15, 17, 18, 16, 12, 5, -3, -12, -18, -20, -19, -16, -13, -8, -4, -1, 1, 4, 6, 8, 9, 9, 9, 7, 3, -1, -6, -10, -12, -11, -9, -5, 0, 4 }, |
||||
{ 3, 9, 14, 17, 20, 21, 19, 14, 4, -8, -19, -25, -26, -25, -21, -17, -12, -7, -2, 1, 5, 9, 13, 15, 16, 16, 13, 7, 0, -7, -12, -15, -14, -11, -6, -1, 3 }, |
||||
}; |
||||
|
||||
static float get_lookup_table_val(unsigned lat, unsigned lon); |
||||
|
||||
float get_mag_declination(float lat, float lon) |
||||
{ |
||||
/*
|
||||
* If the values exceed valid ranges, return zero as default |
||||
* as we have no way of knowing what the closest real value |
||||
* would be. |
||||
*/ |
||||
if (lat < -90.0f || lat > 90.0f || |
||||
lon < -180.0f || lon > 180.0f) { |
||||
return 0.0f; |
||||
} |
||||
|
||||
/* round down to nearest sampling resolution */ |
||||
int min_lat = (int)(lat / SAMPLING_RES) * SAMPLING_RES; |
||||
int min_lon = (int)(lon / SAMPLING_RES) * SAMPLING_RES; |
||||
|
||||
/* for the rare case of hitting the bounds exactly
|
||||
* the rounding logic wouldn't fit, so enforce it. |
||||
*/ |
||||
|
||||
/* limit to table bounds - required for maxima even when table spans full globe range */ |
||||
if (lat <= SAMPLING_MIN_LAT) { |
||||
min_lat = SAMPLING_MIN_LAT; |
||||
} |
||||
|
||||
if (lat >= SAMPLING_MAX_LAT) { |
||||
min_lat = (int)(lat / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES; |
||||
} |
||||
|
||||
if (lon <= SAMPLING_MIN_LON) { |
||||
min_lon = SAMPLING_MIN_LON; |
||||
} |
||||
|
||||
if (lon >= SAMPLING_MAX_LON) { |
||||
min_lon = (int)(lon / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES; |
||||
} |
||||
|
||||
/* find index of nearest low sampling point */ |
||||
unsigned min_lat_index = (-(SAMPLING_MIN_LAT) + min_lat) / SAMPLING_RES; |
||||
unsigned min_lon_index = (-(SAMPLING_MIN_LON) + min_lon) / SAMPLING_RES; |
||||
|
||||
float declination_sw = get_lookup_table_val(min_lat_index, min_lon_index); |
||||
float declination_se = get_lookup_table_val(min_lat_index, min_lon_index + 1); |
||||
float declination_ne = get_lookup_table_val(min_lat_index + 1, min_lon_index + 1); |
||||
float declination_nw = get_lookup_table_val(min_lat_index + 1, min_lon_index); |
||||
|
||||
/* perform bilinear interpolation on the four grid corners */ |
||||
|
||||
float declination_min = ((lon - min_lon) / SAMPLING_RES) * (declination_se - declination_sw) + declination_sw; |
||||
float declination_max = ((lon - min_lon) / SAMPLING_RES) * (declination_ne - declination_nw) + declination_nw; |
||||
|
||||
return ((lat - min_lat) / SAMPLING_RES) * (declination_max - declination_min) + declination_min; |
||||
} |
||||
|
||||
float get_lookup_table_val(unsigned lat_index, unsigned lon_index) |
||||
{ |
||||
return declination_table[lat_index][lon_index]; |
||||
} |
||||
|
||||
/*
|
||||
* Azimuthal Equidistant Projection |
||||
* formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
|
||||
*/ |
||||
|
||||
static struct map_projection_reference_s mp_ref = {0.0, 0.0, 0.0, 0.0, false, 0}; |
||||
static struct globallocal_converter_reference_s gl_ref = {0.0f, false}; |
||||
|
||||
bool map_projection_global_initialized() |
||||
{ |
||||
return map_projection_initialized(&mp_ref); |
||||
} |
||||
|
||||
bool map_projection_initialized(const struct map_projection_reference_s *ref) |
||||
{ |
||||
return ref->init_done; |
||||
} |
||||
|
||||
uint64_t map_projection_global_timestamp() |
||||
{ |
||||
return map_projection_timestamp(&mp_ref); |
||||
} |
||||
|
||||
uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref) |
||||
{ |
||||
return ref->timestamp; |
||||
} |
||||
|
||||
int map_projection_global_init(double lat_0, double lon_0, |
||||
uint64_t timestamp) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
|
||||
{ |
||||
return map_projection_init_timestamped(&mp_ref, lat_0, lon_0, timestamp); |
||||
} |
||||
|
||||
int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, |
||||
uint64_t timestamp) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
|
||||
{ |
||||
|
||||
ref->lat_rad = lat_0 * M_DEG_TO_RAD; |
||||
ref->lon_rad = lon_0 * M_DEG_TO_RAD; |
||||
ref->sin_lat = sin(ref->lat_rad); |
||||
ref->cos_lat = cos(ref->lat_rad); |
||||
|
||||
ref->timestamp = timestamp; |
||||
ref->init_done = true; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad) |
||||
{ |
||||
return map_projection_reference(&mp_ref, ref_lat_rad, ref_lon_rad); |
||||
} |
||||
|
||||
int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, |
||||
double *ref_lon_rad) |
||||
{ |
||||
if (!map_projection_initialized(ref)) { |
||||
return -1; |
||||
} |
||||
|
||||
*ref_lat_rad = ref->lat_rad; |
||||
*ref_lon_rad = ref->lon_rad; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int map_projection_global_project(double lat, double lon, float *x, float *y) |
||||
{ |
||||
return map_projection_project(&mp_ref, lat, lon, x, y); |
||||
|
||||
} |
||||
|
||||
int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, |
||||
float *y) |
||||
{ |
||||
if (!map_projection_initialized(ref)) { |
||||
return -1; |
||||
} |
||||
|
||||
double lat_rad = lat * M_DEG_TO_RAD; |
||||
double lon_rad = lon * M_DEG_TO_RAD; |
||||
|
||||
double sin_lat = sin(lat_rad); |
||||
double cos_lat = cos(lat_rad); |
||||
double cos_d_lon = cos(lon_rad - ref->lon_rad); |
||||
|
||||
double arg = ref->sin_lat * sin_lat + ref->cos_lat * cos_lat * cos_d_lon; |
||||
|
||||
if (arg > 1.0) { |
||||
arg = 1.0; |
||||
|
||||
} else if (arg < -1.0) { |
||||
arg = -1.0; |
||||
} |
||||
|
||||
double c = acos(arg); |
||||
double k = (fabs(c) < DBL_EPSILON) ? 1.0 : (c / sin(c)); |
||||
|
||||
*x = k * (ref->cos_lat * sin_lat - ref->sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH; |
||||
*y = k * cos_lat * sin(lon_rad - ref->lon_rad) * CONSTANTS_RADIUS_OF_EARTH; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int map_projection_global_reproject(float x, float y, double *lat, double *lon) |
||||
{ |
||||
return map_projection_reproject(&mp_ref, x, y, lat, lon); |
||||
} |
||||
|
||||
int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, |
||||
double *lon) |
||||
{ |
||||
if (!map_projection_initialized(ref)) { |
||||
return -1; |
||||
} |
||||
|
||||
double x_rad = x / CONSTANTS_RADIUS_OF_EARTH; |
||||
double y_rad = y / CONSTANTS_RADIUS_OF_EARTH; |
||||
double c = sqrtf(x_rad * x_rad + y_rad * y_rad); |
||||
double sin_c = sin(c); |
||||
double cos_c = cos(c); |
||||
|
||||
double lat_rad; |
||||
double lon_rad; |
||||
|
||||
if (fabs(c) > DBL_EPSILON) { |
||||
lat_rad = asin(cos_c * ref->sin_lat + (x_rad * sin_c * ref->cos_lat) / c); |
||||
lon_rad = (ref->lon_rad + atan2(y_rad * sin_c, c * ref->cos_lat * cos_c - x_rad * ref->sin_lat * sin_c)); |
||||
|
||||
} else { |
||||
lat_rad = ref->lat_rad; |
||||
lon_rad = ref->lon_rad; |
||||
} |
||||
|
||||
*lat = lat_rad * 180.0 / M_PI; |
||||
*lon = lon_rad * 180.0 / M_PI; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int map_projection_global_getref(double *lat_0, double *lon_0) |
||||
{ |
||||
if (!map_projection_global_initialized()) { |
||||
return -1; |
||||
} |
||||
|
||||
if (lat_0 != NULL) { |
||||
*lat_0 = M_RAD_TO_DEG * mp_ref.lat_rad; |
||||
} |
||||
|
||||
if (lon_0 != NULL) { |
||||
*lon_0 = M_RAD_TO_DEG * mp_ref.lon_rad; |
||||
} |
||||
|
||||
return 0; |
||||
|
||||
} |
||||
int globallocalconverter_init(double lat_0, double lon_0, float alt_0, uint64_t timestamp) |
||||
{ |
||||
gl_ref.alt = alt_0; |
||||
|
||||
if (!map_projection_global_init(lat_0, lon_0, timestamp)) { |
||||
gl_ref.init_done = true; |
||||
return 0; |
||||
|
||||
} else { |
||||
gl_ref.init_done = false; |
||||
return -1; |
||||
} |
||||
} |
||||
|
||||
bool globallocalconverter_initialized() |
||||
{ |
||||
return gl_ref.init_done && map_projection_global_initialized(); |
||||
} |
||||
|
||||
int globallocalconverter_tolocal(double lat, double lon, float alt, float *x, float *y, float *z) |
||||
{ |
||||
if (!map_projection_global_initialized()) { |
||||
return -1; |
||||
} |
||||
|
||||
map_projection_global_project(lat, lon, x, y); |
||||
*z = gl_ref.alt - alt; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int globallocalconverter_toglobal(float x, float y, float z, double *lat, double *lon, float *alt) |
||||
{ |
||||
if (!map_projection_global_initialized()) { |
||||
return -1; |
||||
} |
||||
|
||||
map_projection_global_reproject(x, y, lat, lon); |
||||
*alt = gl_ref.alt - z; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int globallocalconverter_getref(double *lat_0, double *lon_0, float *alt_0) |
||||
{ |
||||
if (!map_projection_global_initialized()) { |
||||
return -1; |
||||
} |
||||
|
||||
if (map_projection_global_getref(lat_0, lon_0)) { |
||||
return -1; |
||||
} |
||||
|
||||
if (alt_0 != NULL) { |
||||
*alt_0 = gl_ref.alt; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) |
||||
{ |
||||
double lat_now_rad = lat_now / (double)180.0 * M_PI; |
||||
double lon_now_rad = lon_now / (double)180.0 * M_PI; |
||||
double lat_next_rad = lat_next / (double)180.0 * M_PI; |
||||
double lon_next_rad = lon_next / (double)180.0 * M_PI; |
||||
|
||||
|
||||
double d_lat = lat_next_rad - lat_now_rad; |
||||
double d_lon = lon_next_rad - lon_now_rad; |
||||
|
||||
double a = sin(d_lat / (double)2.0) * sin(d_lat / (double)2.0) + sin(d_lon / (double)2.0) * sin(d_lon / |
||||
(double)2.0) * cos(lat_now_rad) * cos(lat_next_rad); |
||||
double c = (double)2.0 * atan2(sqrt(a), sqrt((double)1.0 - a)); |
||||
|
||||
return CONSTANTS_RADIUS_OF_EARTH * c; |
||||
} |
||||
|
||||
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist, |
||||
double *lat_target, double *lon_target) |
||||
{ |
||||
if (fabsf(dist) < FLT_EPSILON) { |
||||
*lat_target = lat_A; |
||||
*lon_target = lon_A; |
||||
|
||||
} else if (dist >= FLT_EPSILON) { |
||||
float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B); |
||||
waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target); |
||||
|
||||
} else { |
||||
float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B); |
||||
heading = _wrap_2pi(heading + M_PI_F); |
||||
waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target); |
||||
} |
||||
} |
||||
|
||||
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist, |
||||
double *lat_target, double *lon_target) |
||||
{ |
||||
bearing = _wrap_2pi(bearing); |
||||
double radius_ratio = (double)(fabs(dist) / CONSTANTS_RADIUS_OF_EARTH); |
||||
|
||||
double lat_start_rad = lat_start * M_DEG_TO_RAD; |
||||
double lon_start_rad = lon_start * M_DEG_TO_RAD; |
||||
|
||||
*lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos(( |
||||
double)bearing)); |
||||
*lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad), |
||||
cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target)); |
||||
|
||||
*lat_target *= M_RAD_TO_DEG; |
||||
*lon_target *= M_RAD_TO_DEG; |
||||
} |
||||
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) |
||||
{ |
||||
double lat_now_rad = lat_now * M_DEG_TO_RAD; |
||||
double lon_now_rad = lon_now * M_DEG_TO_RAD; |
||||
double lat_next_rad = lat_next * M_DEG_TO_RAD; |
||||
double lon_next_rad = lon_next * M_DEG_TO_RAD; |
||||
|
||||
double d_lon = lon_next_rad - lon_now_rad; |
||||
|
||||
/* conscious mix of double and float trig function to maximize speed and efficiency */ |
||||
float theta = atan2f(sin(d_lon) * cos(lat_next_rad) , |
||||
cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)); |
||||
|
||||
theta = _wrap_pi(theta); |
||||
|
||||
return theta; |
||||
} |
||||
|
||||
void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, |
||||
float *v_e) |
||||
{ |
||||
double lat_now_rad = lat_now * M_DEG_TO_RAD; |
||||
double lon_now_rad = lon_now * M_DEG_TO_RAD; |
||||
double lat_next_rad = lat_next * M_DEG_TO_RAD; |
||||
double lon_next_rad = lon_next * M_DEG_TO_RAD; |
||||
|
||||
double d_lon = lon_next_rad - lon_now_rad; |
||||
|
||||
/* conscious mix of double and float trig function to maximize speed and efficiency */ |
||||
*v_n = CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos( |
||||
d_lon)); |
||||
*v_e = CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad); |
||||
} |
||||
|
||||
void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, |
||||
float *v_n, float *v_e) |
||||
{ |
||||
double lat_now_rad = lat_now * M_DEG_TO_RAD; |
||||
double lon_now_rad = lon_now * M_DEG_TO_RAD; |
||||
double lat_next_rad = lat_next * M_DEG_TO_RAD; |
||||
double lon_next_rad = lon_next * M_DEG_TO_RAD; |
||||
|
||||
double d_lat = lat_next_rad - lat_now_rad; |
||||
double d_lon = lon_next_rad - lon_now_rad; |
||||
|
||||
/* conscious mix of double and float trig function to maximize speed and efficiency */ |
||||
*v_n = CONSTANTS_RADIUS_OF_EARTH * d_lat; |
||||
*v_e = CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad); |
||||
} |
||||
|
||||
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, |
||||
double *lon_res) |
||||
{ |
||||
double lat_now_rad = lat_now * M_DEG_TO_RAD; |
||||
double lon_now_rad = lon_now * M_DEG_TO_RAD; |
||||
|
||||
*lat_res = (lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH) * M_RAD_TO_DEG; |
||||
*lon_res = (lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad))) * M_RAD_TO_DEG; |
||||
} |
||||
|
||||
// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>
|
||||
|
||||
int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, |
||||
double lat_start, double lon_start, double lat_end, double lon_end) |
||||
{ |
||||
// This function returns the distance to the nearest point on the track line. Distance is positive if current
|
||||
// position is right of the track and negative if left of the track as seen from a point on the track line
|
||||
// headed towards the end point.
|
||||
|
||||
float dist_to_end; |
||||
float bearing_end; |
||||
float bearing_track; |
||||
float bearing_diff; |
||||
|
||||
int return_value = ERROR; // Set error flag, cleared when valid result calculated.
|
||||
crosstrack_error->past_end = false; |
||||
crosstrack_error->distance = 0.0f; |
||||
crosstrack_error->bearing = 0.0f; |
||||
|
||||
dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); |
||||
|
||||
// Return error if arguments are bad
|
||||
if (dist_to_end < 0.1f) { |
||||
return ERROR; |
||||
} |
||||
|
||||
bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); |
||||
bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end); |
||||
bearing_diff = bearing_track - bearing_end; |
||||
bearing_diff = _wrap_pi(bearing_diff); |
||||
|
||||
// Return past_end = true if past end point of line
|
||||
if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) { |
||||
crosstrack_error->past_end = true; |
||||
return_value = OK; |
||||
return return_value; |
||||
} |
||||
|
||||
crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff); |
||||
|
||||
if (sin(bearing_diff) >= 0) { |
||||
crosstrack_error->bearing = _wrap_pi(bearing_track - M_PI_2_F); |
||||
|
||||
} else { |
||||
crosstrack_error->bearing = _wrap_pi(bearing_track + M_PI_2_F); |
||||
} |
||||
|
||||
return_value = OK; |
||||
|
||||
return return_value; |
||||
|
||||
} |
||||
|
||||
|
||||
int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, |
||||
double lat_center, double lon_center, |
||||
float radius, float arc_start_bearing, float arc_sweep) |
||||
{ |
||||
// This function returns the distance to the nearest point on the track arc. Distance is positive if current
|
||||
// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and
|
||||
// headed towards the end point.
|
||||
|
||||
// Determine if the current position is inside or outside the sector between the line from the center
|
||||
// to the arc start and the line from the center to the arc end
|
||||
float bearing_sector_start; |
||||
float bearing_sector_end; |
||||
float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); |
||||
bool in_sector; |
||||
|
||||
int return_value = ERROR; // Set error flag, cleared when valid result calculated.
|
||||
crosstrack_error->past_end = false; |
||||
crosstrack_error->distance = 0.0f; |
||||
crosstrack_error->bearing = 0.0f; |
||||
|
||||
// Return error if arguments are bad
|
||||
if (radius < 0.1f) { return return_value; } |
||||
|
||||
|
||||
if (arc_sweep >= 0.0f) { |
||||
bearing_sector_start = arc_start_bearing; |
||||
bearing_sector_end = arc_start_bearing + arc_sweep; |
||||
|
||||
if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= M_TWOPI_F; } |
||||
|
||||
} else { |
||||
bearing_sector_end = arc_start_bearing; |
||||
bearing_sector_start = arc_start_bearing - arc_sweep; |
||||
|
||||
if (bearing_sector_start < 0.0f) { bearing_sector_start += M_TWOPI_F; } |
||||
} |
||||
|
||||
in_sector = false; |
||||
|
||||
// Case where sector does not span zero
|
||||
if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start |
||||
&& bearing_now <= bearing_sector_end) { in_sector = true; } |
||||
|
||||
// Case where sector does span zero
|
||||
if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start |
||||
|| bearing_now < bearing_sector_end)) { in_sector = true; } |
||||
|
||||
// If in the sector then calculate distance and bearing to closest point
|
||||
if (in_sector) { |
||||
crosstrack_error->past_end = false; |
||||
float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); |
||||
|
||||
if (dist_to_center <= radius) { |
||||
crosstrack_error->distance = radius - dist_to_center; |
||||
crosstrack_error->bearing = bearing_now + M_PI_F; |
||||
|
||||
} else { |
||||
crosstrack_error->distance = dist_to_center - radius; |
||||
crosstrack_error->bearing = bearing_now; |
||||
} |
||||
|
||||
// If out of the sector then calculate dist and bearing to start or end point
|
||||
|
||||
} else { |
||||
|
||||
// Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude)
|
||||
// and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to
|
||||
// calculate the position of the start and end points. We should not be doing this often
|
||||
// as this function generally will not be called repeatedly when we are out of the sector.
|
||||
|
||||
double start_disp_x = (double)radius * sin(arc_start_bearing); |
||||
double start_disp_y = (double)radius * cos(arc_start_bearing); |
||||
double end_disp_x = (double)radius * sin(_wrap_pi((double)(arc_start_bearing + arc_sweep))); |
||||
double end_disp_y = (double)radius * cos(_wrap_pi((double)(arc_start_bearing + arc_sweep))); |
||||
double lon_start = lon_now + start_disp_x / 111111.0; |
||||
double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0; |
||||
double lon_end = lon_now + end_disp_x / 111111.0; |
||||
double lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0; |
||||
double dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); |
||||
double dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); |
||||
|
||||
|
||||
if (dist_to_start < dist_to_end) { |
||||
crosstrack_error->distance = dist_to_start; |
||||
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); |
||||
|
||||
} else { |
||||
crosstrack_error->past_end = true; |
||||
crosstrack_error->distance = dist_to_end; |
||||
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); |
||||
} |
||||
|
||||
} |
||||
|
||||
crosstrack_error->bearing = _wrap_pi((double)crosstrack_error->bearing); |
||||
return_value = OK; |
||||
return return_value; |
||||
} |
||||
|
||||
float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now, |
||||
double lat_next, double lon_next, float alt_next, |
||||
float *dist_xy, float *dist_z) |
||||
{ |
||||
double current_x_rad = lat_next / 180.0 * M_PI; |
||||
double current_y_rad = lon_next / 180.0 * M_PI; |
||||
double x_rad = lat_now / 180.0 * M_PI; |
||||
double y_rad = lon_now / 180.0 * M_PI; |
||||
|
||||
double d_lat = x_rad - current_x_rad; |
||||
double d_lon = y_rad - current_y_rad; |
||||
|
||||
double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(current_x_rad) * cos(x_rad); |
||||
double c = 2 * atan2(sqrt(a), sqrt(1 - a)); |
||||
|
||||
float dxy = CONSTANTS_RADIUS_OF_EARTH * c; |
||||
float dz = alt_now - alt_next; |
||||
|
||||
*dist_xy = fabsf(dxy); |
||||
*dist_z = fabsf(dz); |
||||
|
||||
return sqrtf(dxy * dxy + dz * dz); |
||||
} |
||||
|
||||
|
||||
float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now, |
||||
float x_next, float y_next, float z_next, |
||||
float *dist_xy, float *dist_z) |
||||
{ |
||||
float dx = x_now - x_next; |
||||
float dy = y_now - y_next; |
||||
float dz = z_now - z_next; |
||||
|
||||
*dist_xy = sqrtf(dx * dx + dy * dy); |
||||
*dist_z = fabsf(dz); |
||||
|
||||
return sqrtf(dx * dx + dy * dy + dz * dz); |
||||
} |
||||
|
||||
float _wrap_pi(float bearing) |
||||
{ |
||||
/* value is inf or NaN */ |
||||
if (!math::isfinite(bearing)) { |
||||
return bearing; |
||||
} |
||||
|
||||
int c = 0; |
||||
|
||||
while (bearing >= M_PI_F) { |
||||
bearing -= M_TWOPI_F; |
||||
|
||||
if (c++ > 3) { |
||||
return NAN; |
||||
} |
||||
} |
||||
|
||||
c = 0; |
||||
|
||||
while (bearing < -M_PI_F) { |
||||
bearing += M_TWOPI_F; |
||||
|
||||
if (c++ > 3) { |
||||
return NAN; |
||||
} |
||||
} |
||||
|
||||
return bearing; |
||||
} |
||||
|
||||
float _wrap_2pi(float bearing) |
||||
{ |
||||
/* value is inf or NaN */ |
||||
if (!math::isfinite(bearing)) { |
||||
return bearing; |
||||
} |
||||
|
||||
int c = 0; |
||||
|
||||
while (bearing >= M_TWOPI_F) { |
||||
bearing -= M_TWOPI_F; |
||||
|
||||
if (c++ > 3) { |
||||
return NAN; |
||||
} |
||||
} |
||||
|
||||
c = 0; |
||||
|
||||
while (bearing < 0.0f) { |
||||
bearing += M_TWOPI_F; |
||||
|
||||
if (c++ > 3) { |
||||
return NAN; |
||||
} |
||||
} |
||||
|
||||
return bearing; |
||||
} |
||||
|
||||
float _wrap_180(float bearing) |
||||
{ |
||||
/* value is inf or NaN */ |
||||
if (!math::isfinite(bearing)) { |
||||
return bearing; |
||||
} |
||||
|
||||
int c = 0; |
||||
|
||||
while (bearing >= 180.0f) { |
||||
bearing -= 360.0f; |
||||
|
||||
if (c++ > 3) { |
||||
return NAN; |
||||
} |
||||
} |
||||
|
||||
c = 0; |
||||
|
||||
while (bearing < -180.0f) { |
||||
bearing += 360.0f; |
||||
|
||||
if (c++ > 3) { |
||||
return NAN; |
||||
} |
||||
} |
||||
|
||||
return bearing; |
||||
} |
||||
|
||||
float _wrap_360(float bearing) |
||||
{ |
||||
/* value is inf or NaN */ |
||||
if (!math::isfinite(bearing)) { |
||||
return bearing; |
||||
} |
||||
|
||||
int c = 0; |
||||
|
||||
while (bearing >= 360.0f) { |
||||
bearing -= 360.0f; |
||||
|
||||
if (c++ > 3) { |
||||
return NAN; |
||||
} |
||||
} |
||||
|
||||
c = 0; |
||||
|
||||
while (bearing < 0.0f) { |
||||
bearing += 360.0f; |
||||
|
||||
if (c++ > 3) { |
||||
return NAN; |
||||
} |
||||
} |
||||
|
||||
return bearing; |
||||
} |
||||
#endif //POSIX_SHARED
|
@ -0,0 +1,310 @@
@@ -0,0 +1,310 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (C) 2012, 2014 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* @file geo.h |
||||
* |
||||
* Definition of geo / math functions to perform geodesic calculations |
||||
* |
||||
* @author Thomas Gubler <thomasgubler@student.ethz.ch> |
||||
* @author Julian Oes <joes@student.ethz.ch> |
||||
* @author Lorenz Meier <lm@inf.ethz.ch> |
||||
* @author Anton Babushkin <anton.babushkin@me.com> |
||||
* Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu> |
||||
*/ |
||||
#ifndef GEO_H |
||||
#define GEO_H |
||||
#ifdef POSIX_SHARED |
||||
#include <stdbool.h> |
||||
#include "mathlib.h" |
||||
|
||||
#define CONSTANTS_ONE_G 9.80665f /* m/s^2 */ |
||||
#define CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C 1.225f /* kg/m^3 */ |
||||
#define CONSTANTS_AIR_GAS_CONST 287.1f /* J/(kg * K) */ |
||||
#define CONSTANTS_ABSOLUTE_NULL_CELSIUS -273.15f /* °C */ |
||||
#define CONSTANTS_RADIUS_OF_EARTH 6371000 /* meters (m) */ |
||||
#define M_TWOPI_F 6.28318530717958647692f |
||||
#define M_PI_2_F 1.57079632679489661923f |
||||
#define M_RAD_TO_DEG 0.01745329251994329576f |
||||
#define M_DEG_TO_RAD 57.29577951308232087679f |
||||
#define OK 0 |
||||
#define ERROR -1 |
||||
// XXX remove
|
||||
struct crosstrack_error_s { |
||||
bool past_end; // Flag indicating we are past the end of the line/arc segment
|
||||
float distance; // Distance in meters to closest point on line/arc
|
||||
float bearing; // Bearing in radians to closest point on line/arc
|
||||
} ; |
||||
|
||||
/* lat/lon are in radians */ |
||||
struct map_projection_reference_s { |
||||
double lat_rad; |
||||
double lon_rad; |
||||
double sin_lat; |
||||
double cos_lat; |
||||
bool init_done; |
||||
uint64_t timestamp; |
||||
}; |
||||
|
||||
struct globallocal_converter_reference_s { |
||||
float alt; |
||||
bool init_done; |
||||
}; |
||||
|
||||
/**
|
||||
* Checks if global projection was initialized |
||||
* @return true if map was initialized before, false else |
||||
*/ |
||||
bool map_projection_global_initialized(void); |
||||
|
||||
/**
|
||||
* Checks if projection given as argument was initialized |
||||
* @return true if map was initialized before, false else |
||||
*/ |
||||
bool map_projection_initialized(const struct map_projection_reference_s *ref); |
||||
|
||||
/**
|
||||
* Get the timestamp of the global map projection |
||||
* @return the timestamp of the map_projection |
||||
*/ |
||||
uint64_t map_projection_global_timestamp(void); |
||||
|
||||
/**
|
||||
* Get the timestamp of the map projection given by the argument |
||||
* @return the timestamp of the map_projection |
||||
*/ |
||||
uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref); |
||||
|
||||
/**
|
||||
* Writes the reference values of the global projection to ref_lat and ref_lon |
||||
* @return 0 if map_projection_init was called before, -1 else |
||||
*/ |
||||
int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad); |
||||
|
||||
/**
|
||||
* Writes the reference values of the projection given by the argument to ref_lat and ref_lon |
||||
* @return 0 if map_projection_init was called before, -1 else |
||||
*/ |
||||
int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, |
||||
double *ref_lon_rad); |
||||
|
||||
|
||||
/**
|
||||
* Initializes the map transformation given by the argument. |
||||
* |
||||
* Initializes the transformation between the geographic coordinate system and |
||||
* the azimuthal equidistant plane |
||||
* @param lat in degrees (47.1234567°, not 471234567°) |
||||
* @param lon in degrees (8.1234567°, not 81234567°) |
||||
*/ |
||||
int map_projection_init_timestamped(struct map_projection_reference_s *ref, |
||||
double lat_0, double lon_0, uint64_t timestamp); |
||||
|
||||
/**
|
||||
* Initializes the map transformation given by the argument and sets the timestamp to now. |
||||
* |
||||
* Initializes the transformation between the geographic coordinate system and |
||||
* the azimuthal equidistant plane |
||||
* @param lat in degrees (47.1234567°, not 471234567°) |
||||
* @param lon in degrees (8.1234567°, not 81234567°) |
||||
*/ |
||||
int map_projection_init(struct map_projection_reference_s *ref, double lat_0, double lon_0); |
||||
|
||||
/**
|
||||
* Transforms a point in the geographic coordinate system to the local |
||||
* azimuthal equidistant plane using the global projection |
||||
* @param x north |
||||
* @param y east |
||||
* @param lat in degrees (47.1234567°, not 471234567°) |
||||
* @param lon in degrees (8.1234567°, not 81234567°) |
||||
* @return 0 if map_projection_init was called before, -1 else |
||||
*/ |
||||
int map_projection_global_project(double lat, double lon, float *x, float *y); |
||||
|
||||
|
||||
/* Transforms a point in the geographic coordinate system to the local
|
||||
* azimuthal equidistant plane using the projection given by the argument |
||||
* @param x north |
||||
* @param y east |
||||
* @param lat in degrees (47.1234567°, not 471234567°) |
||||
* @param lon in degrees (8.1234567°, not 81234567°) |
||||
* @return 0 if map_projection_init was called before, -1 else |
||||
*/ |
||||
int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, |
||||
float *y); |
||||
|
||||
/**
|
||||
* Transforms a point in the local azimuthal equidistant plane to the |
||||
* geographic coordinate system using the global projection |
||||
* |
||||
* @param x north |
||||
* @param y east |
||||
* @param lat in degrees (47.1234567°, not 471234567°) |
||||
* @param lon in degrees (8.1234567°, not 81234567°) |
||||
* @return 0 if map_projection_init was called before, -1 else |
||||
*/ |
||||
int map_projection_global_reproject(float x, float y, double *lat, double *lon); |
||||
|
||||
/**
|
||||
* Transforms a point in the local azimuthal equidistant plane to the |
||||
* geographic coordinate system using the projection given by the argument |
||||
* |
||||
* @param x north |
||||
* @param y east |
||||
* @param lat in degrees (47.1234567°, not 471234567°) |
||||
* @param lon in degrees (8.1234567°, not 81234567°) |
||||
* @return 0 if map_projection_init was called before, -1 else |
||||
*/ |
||||
int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, |
||||
double *lon); |
||||
|
||||
/**
|
||||
* Get reference position of the global map projection |
||||
*/ |
||||
int map_projection_global_getref(double *lat_0, double *lon_0); |
||||
|
||||
/**
|
||||
* Initialize the global mapping between global position (spherical) and local position (NED). |
||||
*/ |
||||
int globallocalconverter_init(double lat_0, double lon_0, float alt_0, uint64_t timestamp); |
||||
|
||||
/**
|
||||
* Checks if globallocalconverter was initialized |
||||
* @return true if map was initialized before, false else |
||||
*/ |
||||
bool globallocalconverter_initialized(void); |
||||
|
||||
/**
|
||||
* Convert from global position coordinates to local position coordinates using the global reference |
||||
*/ |
||||
int globallocalconverter_tolocal(double lat, double lon, float alt, float *x, float *y, float *z); |
||||
|
||||
/**
|
||||
* Convert from local position coordinates to global position coordinates using the global reference |
||||
*/ |
||||
int globallocalconverter_toglobal(float x, float y, float z, double *lat, double *lon, float *alt); |
||||
|
||||
/**
|
||||
* Get reference position of the global to local converter |
||||
*/ |
||||
int globallocalconverter_getref(double *lat_0, double *lon_0, float *alt_0); |
||||
|
||||
/**
|
||||
* Returns the distance to the next waypoint in meters. |
||||
* |
||||
* @param lat_now current position in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_now current position in degrees (8.1234567°, not 81234567°) |
||||
* @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°) |
||||
*/ |
||||
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next); |
||||
|
||||
|
||||
/**
|
||||
* Creates a new waypoint C on the line of two given waypoints (A, B) at certain distance |
||||
* from waypoint A |
||||
* |
||||
* @param lat_A waypoint A latitude in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_A waypoint A longitude in degrees (8.1234567°, not 81234567°) |
||||
* @param lat_B waypoint B latitude in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_B waypoint B longitude in degrees (8.1234567°, not 81234567°) |
||||
* @param dist distance of target waypoint from waypoint A in meters (can be negative) |
||||
* @param lat_target latitude of target waypoint C in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_target longitude of target waypoint C in degrees (47.1234567°, not 471234567°) |
||||
*/ |
||||
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist, |
||||
double *lat_target, double *lon_target); |
||||
|
||||
/**
|
||||
* Creates a waypoint from given waypoint, distance and bearing |
||||
* see http://www.movable-type.co.uk/scripts/latlong.html
|
||||
* |
||||
* @param lat_start latitude of starting waypoint in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_start longitude of starting waypoint in degrees (8.1234567°, not 81234567°) |
||||
* @param bearing in rad |
||||
* @param distance in meters |
||||
* @param lat_target latitude of target waypoint in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_target longitude of target waypoint in degrees (47.1234567°, not 471234567°) |
||||
*/ |
||||
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist, |
||||
double *lat_target, double *lon_target); |
||||
|
||||
/**
|
||||
* Returns the bearing to the next waypoint in radians. |
||||
* |
||||
* @param lat_now current position in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_now current position in degrees (8.1234567°, not 81234567°) |
||||
* @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°) |
||||
* @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°) |
||||
*/ |
||||
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next); |
||||
|
||||
void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, |
||||
float *v_e); |
||||
|
||||
void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, |
||||
float *v_n, float *v_e); |
||||
|
||||
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, |
||||
double *lon_res); |
||||
|
||||
int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, |
||||
double lat_start, double lon_start, double lat_end, double lon_end); |
||||
|
||||
int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, |
||||
double lat_center, double lon_center, |
||||
float radius, float arc_start_bearing, float arc_sweep); |
||||
|
||||
/*
|
||||
* Calculate distance in global frame |
||||
*/ |
||||
float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now, |
||||
double lat_next, double lon_next, float alt_next, |
||||
float *dist_xy, float *dist_z); |
||||
|
||||
/*
|
||||
* Calculate distance in local frame (NED) |
||||
*/ |
||||
float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now, |
||||
float x_next, float y_next, float z_next, |
||||
float *dist_xy, float *dist_z); |
||||
|
||||
float _wrap_180(float bearing); |
||||
float _wrap_360(float bearing); |
||||
float _wrap_pi(float bearing); |
||||
float _wrap_2pi(float bearing); |
||||
float get_mag_declination(float lat, float lon); |
||||
#else |
||||
#include <lib/geo/geo.h> |
||||
#endif //POSIX_SHARED
|
||||
#endif //GEO_H
|
@ -0,0 +1,57 @@
@@ -0,0 +1,57 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (C) 2012, 2014 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* @file mathlib.cpp |
||||
* |
||||
* Definition of math namespace function for POSIX SHARED |
||||
* |
||||
* @author Siddharth Bharat Purohit <siddharthbharatpurohit@gmail.com> |
||||
*/ |
||||
#include "mathlib.h" |
||||
|
||||
#ifdef POSIX_SHARED |
||||
|
||||
float math::constrain(float &val, float min, float max) |
||||
{ |
||||
return (val < min) ? min : ((val > max) ? max : val); |
||||
} |
||||
float math::radians(float degrees) |
||||
{ |
||||
return (degrees / 180.0f) * M_PI_F; |
||||
} |
||||
float math::degrees(float radians) |
||||
{ |
||||
return (radians * 180.0f) / M_PI_F; |
||||
} |
||||
#endif |
@ -0,0 +1,59 @@
@@ -0,0 +1,59 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (C) 2012, 2014 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* @file mathlib.h |
||||
* |
||||
* Target specific math functions and definitions |
||||
* |
||||
* @author Siddharth Bharat Purohit <siddharthbharatpurohit@gmail.com> |
||||
*/ |
||||
#ifndef MATHLIB_H |
||||
#define MATHLIB_H |
||||
#ifdef POSIX_SHARED |
||||
#include <Eigen/Dense> |
||||
#include <algorithm> |
||||
#define M_PI_F 3.14159265358979323846f |
||||
|
||||
namespace math { |
||||
using namespace Eigen; |
||||
using namespace std; |
||||
|
||||
float constrain(float &val, float min, float max); |
||||
float radians(float degrees); |
||||
float degrees(float radians); |
||||
} |
||||
#else |
||||
#include <mathlib/mathlib.h> |
||||
#endif //POSIX_SHARED
|
||||
#endif //MATHLIB_H
|
@ -0,0 +1,49 @@
@@ -0,0 +1,49 @@
|
||||
############################################################################ |
||||
# |
||||
# Copyright (c) 2015 ECL Development Team. All rights reserved. |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions |
||||
# are met: |
||||
# |
||||
# 1. Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# 2. Redistributions in binary form must reproduce the above copyright |
||||
# notice, this list of conditions and the following disclaimer in |
||||
# the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# 3. Neither the name ECL nor the names of its contributors may be |
||||
# used to endorse or promote products derived from this software |
||||
# without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
# POSSIBILITY OF SUCH DAMAGE. |
||||
# |
||||
############################################################################ |
||||
|
||||
#download, build and install eigen |
||||
wget -O eigen.tar.bz2 http://bitbucket.org/eigen/eigen/get/3.2.8.tar.bz2 |
||||
mkdir eigen |
||||
tar -xvjf eigen.tar.bz2 -C eigen --strip-components=1 |
||||
mkdir eigen-build |
||||
cd eigen-build |
||||
cmake ../eigen |
||||
make |
||||
sudo make install |
||||
|
||||
#build EKF shared library |
||||
cd .. |
||||
mkdir Build |
||||
cd Build |
||||
cmake ../EKF |
||||
make |
Loading…
Reference in new issue