Browse Source

drivers/imu/invensense: new ICM20948 driver on SPI with AK09916 mag

sbg
Daniel Agar 5 years ago committed by GitHub
parent
commit
951969ba00
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      boards/mro/ctrl-zero-f7/default.cmake
  2. 4
      boards/mro/ctrl-zero-f7/init/rc.board_sensors
  3. 2
      boards/mro/ctrl-zero-f7/src/board_config.h
  4. 5
      boards/mro/ctrl-zero-f7/src/init.c
  5. 4
      boards/mro/ctrl-zero-f7/src/spi.cpp
  6. 3
      src/drivers/drv_sensor.h
  7. 105
      src/drivers/imu/invensense/icm20948/AKM_AK09916_registers.hpp
  8. 52
      src/drivers/imu/invensense/icm20948/CMakeLists.txt
  9. 755
      src/drivers/imu/invensense/icm20948/ICM20948.cpp
  10. 225
      src/drivers/imu/invensense/icm20948/ICM20948.hpp
  11. 298
      src/drivers/imu/invensense/icm20948/ICM20948_AK09916.cpp
  12. 133
      src/drivers/imu/invensense/icm20948/ICM20948_AK09916.hpp
  13. 272
      src/drivers/imu/invensense/icm20948/InvenSense_ICM20948_registers.hpp
  14. 112
      src/drivers/imu/invensense/icm20948/icm20948_main.cpp

2
boards/mro/ctrl-zero-f7/default.cmake

@ -31,7 +31,7 @@ px4_add_board( @@ -31,7 +31,7 @@ px4_add_board(
#imu # all available imu drivers
imu/bmi088
imu/invensense/icm20602
imu/icm20948
imu/invensense/icm20948
irlock
lights/blinkm
lights/rgbled

4
boards/mro/ctrl-zero-f7/init/rc.board_sensors

@ -12,8 +12,8 @@ icm20602 -s -R 4 start @@ -12,8 +12,8 @@ icm20602 -s -R 4 start
bmi088 -A -R 10 -s start
bmi088 -G -R 10 -s start
# Internal ICM-20948
icm20948 -s -R 10 start
# Internal ICM-20948 (with magnetometer)
icm20948 -s -R 2 -M start
# Interal DPS310 (barometer)
dps310 -s start

2
boards/mro/ctrl-zero-f7/src/board_config.h

@ -118,6 +118,7 @@ @@ -118,6 +118,7 @@
#define BOARD_NUMBER_BRICKS 1
#define GPIO_VDD_3V3_SPEKTRUM_POWER_EN /* PE4 */ (GPIO_OUTPUT|GPIO_PUSHPULL|GPIO_SPEED_2MHz|GPIO_OUTPUT_CLEAR|GPIO_PORTE|GPIO_PIN4)
#define GPIO_VDD_3V3_SENSORS_EN /* PE3 */ (GPIO_OUTPUT|GPIO_PUSHPULL|GPIO_SPEED_2MHz|GPIO_OUTPUT_CLEAR|GPIO_PORTE|GPIO_PIN3)
/* Define True logic Power Control in arch agnostic form */
@ -200,6 +201,7 @@ @@ -200,6 +201,7 @@
GPIO_CAN1_SILENT_S0, \
GPIO_nPOWER_IN_A, \
GPIO_VDD_3V3_SPEKTRUM_POWER_EN, \
GPIO_VDD_3V3_SENSORS_EN, \
GPIO_TONE_ALARM_IDLE, \
GPIO_SAFETY_SWITCH_IN, \
}

5
boards/mro/ctrl-zero-f7/src/init.c

@ -163,7 +163,7 @@ stm32_boardinitialize(void) @@ -163,7 +163,7 @@ stm32_boardinitialize(void)
px4_gpio_init(gpio, arraySize(gpio));
/* configure SPI interfaces */
stm32_spiinitialize();
px4_arch_gpiowrite(GPIO_VDD_3V3_SENSORS_EN, 0);
/* configure USB interfaces */
stm32_usbinitialize();
@ -198,11 +198,14 @@ stm32_boardinitialize(void) @@ -198,11 +198,14 @@ stm32_boardinitialize(void)
__EXPORT int board_app_initialize(uintptr_t arg)
{
/* Power on Interfaces */
px4_arch_gpiowrite(GPIO_VDD_3V3_SENSORS_EN, 1);
board_control_spi_sensors_power(true, 0xffff);
VDD_3V3_SPEKTRUM_POWER_EN(true);
px4_platform_init();
stm32_spiinitialize();
/* configure the DMA allocator */
if (board_dma_alloc_init() < 0) {
syslog(LOG_ERR, "[boot] DMA alloc FAILED\n");

4
boards/mro/ctrl-zero-f7/src/spi.cpp

@ -39,7 +39,7 @@ constexpr px4_spi_bus_t px4_spi_buses[SPI_BUS_MAX_BUS_ITEMS] = { @@ -39,7 +39,7 @@ constexpr px4_spi_bus_t px4_spi_buses[SPI_BUS_MAX_BUS_ITEMS] = {
initSPIBus(SPI::Bus::SPI1, {
initSPIDevice(DRV_IMU_DEVTYPE_ICM20602, SPI::CS{GPIO::PortC, GPIO::Pin2}, SPI::DRDY{GPIO::PortD, GPIO::Pin15}),
initSPIDevice(DRV_IMU_DEVTYPE_ICM20948, SPI::CS{GPIO::PortE, GPIO::Pin15}, SPI::DRDY{GPIO::PortE, GPIO::Pin12}),
}, {GPIO::PortE, GPIO::Pin3}),
}),
initSPIBus(SPI::Bus::SPI2, {
initSPIDevice(SPIDEV_FLASH(0), SPI::CS{GPIO::PortD, GPIO::Pin10}),
initSPIDevice(DRV_BARO_DEVTYPE_DPS310, SPI::CS{GPIO::PortD, GPIO::Pin7}),
@ -47,7 +47,7 @@ constexpr px4_spi_bus_t px4_spi_buses[SPI_BUS_MAX_BUS_ITEMS] = { @@ -47,7 +47,7 @@ constexpr px4_spi_bus_t px4_spi_buses[SPI_BUS_MAX_BUS_ITEMS] = {
initSPIBus(SPI::Bus::SPI5, {
initSPIDevice(DRV_GYR_DEVTYPE_BMI088, SPI::CS{GPIO::PortF, GPIO::Pin10}, SPI::DRDY{GPIO::PortF, GPIO::Pin3}),
initSPIDevice(DRV_ACC_DEVTYPE_BMI088, SPI::CS{GPIO::PortF, GPIO::Pin6}, SPI::DRDY{GPIO::PortF, GPIO::Pin1}),
}, {GPIO::PortE, GPIO::Pin3}),
}),
};
static constexpr bool unused = validateSPIConfig(px4_spi_buses);

3
src/drivers/drv_sensor.h

@ -61,7 +61,7 @@ @@ -61,7 +61,7 @@
#define DRV_MAG_DEVTYPE_RM3100 0x07
#define DRV_MAG_DEVTYPE_QMC5883 0x08
#define DRV_MAG_DEVTYPE_AK09916 0x09
#define DRV_IMU_DEVTYPE_ICM20948 0x0A
#define DRV_MAG_DEVTYPE_IST8308 0x0B
#define DRV_MAG_DEVTYPE_LIS2MDL 0x0C
@ -79,6 +79,7 @@ @@ -79,6 +79,7 @@
#define DRV_IMU_DEVTYPE_ICM20649 0x25
#define DRV_IMU_DEVTYPE_ICM42688P 0x26
#define DRV_IMU_DEVTYPE_ICM40609D 0x27
#define DRV_IMU_DEVTYPE_ICM20948 0x28
#define DRV_RNG_DEVTYPE_MB12XX 0x31
#define DRV_RNG_DEVTYPE_LL40LS 0x32

105
src/drivers/imu/invensense/icm20948/AKM_AK09916_registers.hpp

@ -0,0 +1,105 @@ @@ -0,0 +1,105 @@
/****************************************************************************
*
* Copyright (c) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file AKM_AK09916_registers.hpp
*
* Asahi Kasei Microdevices (AKM) AK09916 registers.
*
*/
#pragma once
#include <cstdint>
namespace AKM_AK09916
{
// TODO: move to a central header
static constexpr uint8_t Bit0 = (1 << 0);
static constexpr uint8_t Bit1 = (1 << 1);
static constexpr uint8_t Bit2 = (1 << 2);
static constexpr uint8_t Bit3 = (1 << 3);
static constexpr uint8_t Bit4 = (1 << 4);
static constexpr uint8_t Bit5 = (1 << 5);
static constexpr uint8_t Bit6 = (1 << 6);
static constexpr uint8_t Bit7 = (1 << 7);
static constexpr uint32_t I2C_SPEED = 400 * 1000; // 400 kHz I2C serial interface
static constexpr uint8_t I2C_ADDRESS_DEFAULT = 0b0001100;
static constexpr uint8_t WHOAMI = 0x09;
enum class Register : uint8_t {
WIA = 0x01, // Device ID
ST1 = 0x10, // Status 1
HXL = 0x11,
HXH = 0x12,
HYL = 0x13,
HYH = 0x14,
HZL = 0x15,
HZH = 0x16,
ST2 = 0x18, // Status 2
CNTL2 = 0x31, // Control 2
CNTL3 = 0x32, // Control 3
};
// ST1
enum ST1_BIT : uint8_t {
DOR = Bit1, // Data overrun
DRDY = Bit0, // Data is ready
};
// ST2
enum ST2_BIT : uint8_t {
BITM = Bit4, // Output bit setting (mirror)
HOFL = Bit3, // Magnetic sensor overflow
};
// CNTL2
enum CNTL2_BIT : uint8_t {
MODE1 = Bit1, // Continuous measurement mode 1 (10Hz)
MODE2 = Bit2, // Continuous measurement mode 2 (20Hz)
MODE3 = Bit2 | Bit1, // Continuous measurement mode 3 (50Hz)
MODE4 = Bit3, // Continuous measurement mode 4 (100Hz)
};
// CNTL3
enum CNTL3_BIT : uint8_t {
SRST = Bit0,
};
} // namespace AKM_AK09916

52
src/drivers/imu/invensense/icm20948/CMakeLists.txt

@ -0,0 +1,52 @@ @@ -0,0 +1,52 @@
############################################################################
#
# Copyright (c) 2020 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
px4_add_module(
MODULE drivers__imu__icm20948
MAIN icm20948
COMPILE_FLAGS
-DDEBUG_BUILD
-O0
SRCS
AKM_AK09916_registers.hpp
ICM20948.cpp
ICM20948.hpp
ICM20948_AK09916.cpp
ICM20948_AK09916.hpp
icm20948_main.cpp
InvenSense_ICM20948_registers.hpp
DEPENDS
px4_work_queue
drivers_accelerometer
drivers_gyroscope
drivers_magnetometer
)

755
src/drivers/imu/invensense/icm20948/ICM20948.cpp

@ -0,0 +1,755 @@ @@ -0,0 +1,755 @@
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM20948.hpp"
#include "AKM_AK09916_registers.hpp"
using namespace time_literals;
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
ICM20948::ICM20948(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation, int bus_frequency,
spi_mode_e spi_mode, spi_drdy_gpio_t drdy_gpio, bool enable_magnetometer) :
SPI(DRV_IMU_DEVTYPE_ICM20948, MODULE_NAME, bus, device, spi_mode, bus_frequency),
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
_drdy_gpio(drdy_gpio),
_px4_accel(get_device_id(), ORB_PRIO_DEFAULT, rotation),
_px4_gyro(get_device_id(), ORB_PRIO_DEFAULT, rotation)
{
ConfigureSampleRate(_px4_gyro.get_max_rate_hz());
if (enable_magnetometer) {
_slave_ak09916_magnetometer = new AKM_AK09916::ICM20948_AK09916(*this, rotation);
if (_slave_ak09916_magnetometer) {
for (auto &r : _register_bank3_cfg) {
if (r.reg == Register::BANK_3::I2C_SLV4_CTRL) {
r.set_bits = I2C_SLV4_CTRL_BIT::I2C_MST_DLY;
} else if (r.reg == Register::BANK_3::I2C_MST_CTRL) {
r.set_bits = I2C_MST_CTRL_BIT::I2C_MST_P_NSR | I2C_MST_CTRL_BIT::I2C_MST_CLK_400_kHz;
} else if (r.reg == Register::BANK_3::I2C_MST_DELAY_CTRL) {
r.set_bits = I2C_MST_DELAY_CTRL_BIT::I2C_SLVX_DLY_EN;
}
}
}
}
}
ICM20948::~ICM20948()
{
perf_free(_transfer_perf);
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
perf_free(_drdy_interval_perf);
delete _slave_ak09916_magnetometer;
}
int ICM20948::init()
{
int ret = SPI::init();
if (ret != PX4_OK) {
DEVICE_DEBUG("SPI::init failed (%i)", ret);
return ret;
}
return Reset() ? 0 : -1;
}
bool ICM20948::Reset()
{
_state = STATE::RESET;
ScheduleClear();
ScheduleNow();
return true;
}
void ICM20948::exit_and_cleanup()
{
DataReadyInterruptDisable();
I2CSPIDriverBase::exit_and_cleanup();
}
void ICM20948::print_status()
{
I2CSPIDriverBase::print_status();
PX4_INFO("FIFO empty interval: %d us (%.3f Hz)", _fifo_empty_interval_us,
static_cast<double>(1000000 / _fifo_empty_interval_us));
perf_print_counter(_transfer_perf);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
perf_print_counter(_drdy_interval_perf);
_px4_accel.print_status();
_px4_gyro.print_status();
if (_slave_ak09916_magnetometer) {
_slave_ak09916_magnetometer->PrintInfo();
}
}
int ICM20948::probe()
{
const uint8_t whoami = RegisterRead(Register::BANK_0::WHO_AM_I);
if (whoami != WHOAMI) {
DEVICE_DEBUG("unexpected WHO_AM_I 0x%02x", whoami);
return PX4_ERROR;
}
return PX4_OK;
}
void ICM20948::RunImpl()
{
switch (_state) {
case STATE::RESET:
// PWR_MGMT_1: Device Reset
RegisterWrite(Register::BANK_0::PWR_MGMT_1, PWR_MGMT_1_BIT::DEVICE_RESET);
_reset_timestamp = hrt_absolute_time();
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(10_ms);
break;
case STATE::WAIT_FOR_RESET:
// The reset value is 0x00 for all registers other than the registers below
if ((RegisterRead(Register::BANK_0::WHO_AM_I) == WHOAMI)
&& (RegisterRead(Register::BANK_0::PWR_MGMT_1) == 0x41)) {
// if reset succeeded then configure
_state = STATE::CONFIGURE;
ScheduleDelayed(10_ms);
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 100_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// start AK09916 magnetometer (I2C aux)
if (_slave_ak09916_magnetometer) {
_slave_ak09916_magnetometer->Reset();
}
// if configure succeeded then start reading from FIFO
_state = STATE::FIFO_READ;
if (DataReadyInterruptConfigure()) {
_data_ready_interrupt_enabled = true;
// backup schedule as a watchdog timeout
ScheduleDelayed(10_ms);
} else {
_data_ready_interrupt_enabled = false;
ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
}
FIFOReset();
} else {
PX4_DEBUG("Configure failed, retrying");
// try again in 10 ms
ScheduleDelayed(10_ms);
}
break;
case STATE::FIFO_READ: {
hrt_abstime timestamp_sample = 0;
uint8_t samples = 0;
if (_data_ready_interrupt_enabled) {
// re-schedule as watchdog timeout
ScheduleDelayed(10_ms);
// timestamp set in data ready interrupt
if (!_force_fifo_count_check) {
samples = _fifo_read_samples.load();
} else {
const uint16_t fifo_count = FIFOReadCount();
samples = (fifo_count / sizeof(FIFO::DATA) / SAMPLES_PER_TRANSFER) * SAMPLES_PER_TRANSFER; // round down to nearest
}
timestamp_sample = _fifo_watermark_interrupt_timestamp;
}
bool failure = false;
// manually check FIFO count if no samples from DRDY or timestamp looks bogus
if (!_data_ready_interrupt_enabled || (samples == 0)
|| (hrt_elapsed_time(&timestamp_sample) > (_fifo_empty_interval_us / 2))) {
// use the time now roughly corresponding with the last sample we'll pull from the FIFO
timestamp_sample = hrt_absolute_time();
const uint16_t fifo_count = FIFOReadCount();
samples = (fifo_count / sizeof(FIFO::DATA) / SAMPLES_PER_TRANSFER) * SAMPLES_PER_TRANSFER; // round down to nearest
}
if (samples > FIFO_MAX_SAMPLES) {
// not technically an overflow, but more samples than we expected or can publish
perf_count(_fifo_overflow_perf);
failure = true;
FIFOReset();
} else if (samples >= SAMPLES_PER_TRANSFER) {
// require at least SAMPLES_PER_TRANSFER (we want at least 1 new accel sample per transfer)
if (!FIFORead(timestamp_sample, samples)) {
failure = true;
_px4_accel.increase_error_count();
_px4_gyro.increase_error_count();
}
} else if (samples == 0) {
failure = true;
perf_count(_fifo_empty_perf);
}
if (failure || hrt_elapsed_time(&_last_config_check_timestamp) > 10_ms) {
// check BANK_0 & BANK_2 registers incrementally
if (RegisterCheck(_register_bank0_cfg[_checked_register_bank0], true)
&& RegisterCheck(_register_bank2_cfg[_checked_register_bank2], true)
&& RegisterCheck(_register_bank3_cfg[_checked_register_bank3], true)
) {
_last_config_check_timestamp = timestamp_sample;
_checked_register_bank0 = (_checked_register_bank0 + 1) % size_register_bank0_cfg;
_checked_register_bank2 = (_checked_register_bank2 + 1) % size_register_bank2_cfg;
_checked_register_bank3 = (_checked_register_bank3 + 1) % size_register_bank3_cfg;
} else {
// register check failed, force reconfigure
PX4_DEBUG("Health check failed, reconfiguring");
_state = STATE::CONFIGURE;
ScheduleNow();
}
} else {
// periodically update temperature (1 Hz)
if (hrt_elapsed_time(&_temperature_update_timestamp) > 1_s) {
UpdateTemperature();
_temperature_update_timestamp = timestamp_sample;
}
}
}
break;
}
}
void ICM20948::ConfigureAccel()
{
const uint8_t ACCEL_FS_SEL = RegisterRead(Register::BANK_2::ACCEL_CONFIG) & (Bit2 | Bit1); // 2:1 ACCEL_FS_SEL[1:0]
switch (ACCEL_FS_SEL) {
case ACCEL_FS_SEL_2G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 16384.f);
_px4_accel.set_range(2.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_4G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 8192.f);
_px4_accel.set_range(4.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_8G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 4096.f);
_px4_accel.set_range(8.f * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_16G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 2048.f);
_px4_accel.set_range(16.f * CONSTANTS_ONE_G);
break;
}
}
void ICM20948::ConfigureGyro()
{
const uint8_t GYRO_FS_SEL = RegisterRead(Register::BANK_2::GYRO_CONFIG_1) & (Bit2 | Bit1); // 2:1 GYRO_FS_SEL[1:0]
switch (GYRO_FS_SEL) {
case GYRO_FS_SEL_250_DPS:
_px4_gyro.set_scale(math::radians(1.f / 131.f));
_px4_gyro.set_range(math::radians(250.f));
break;
case GYRO_FS_SEL_500_DPS:
_px4_gyro.set_scale(math::radians(1.f / 65.5f));
_px4_gyro.set_range(math::radians(500.f));
break;
case GYRO_FS_SEL_1000_DPS:
_px4_gyro.set_scale(math::radians(1.f / 32.8f));
_px4_gyro.set_range(math::radians(1000.f));
break;
case GYRO_FS_SEL_2000_DPS:
_px4_gyro.set_scale(math::radians(1.f / 16.4f));
_px4_gyro.set_range(math::radians(2000.f));
break;
}
}
void ICM20948::ConfigureSampleRate(int sample_rate)
{
if (sample_rate == 0) {
sample_rate = 800; // default to ~800 Hz
}
// round down to nearest FIFO sample dt * SAMPLES_PER_TRANSFER
const float min_interval = SAMPLES_PER_TRANSFER * FIFO_SAMPLE_DT;
_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);
_fifo_gyro_samples = roundf(math::min((float)_fifo_empty_interval_us / (1e6f / GYRO_RATE), (float)FIFO_MAX_SAMPLES));
// recompute FIFO empty interval (us) with actual gyro sample limit
_fifo_empty_interval_us = _fifo_gyro_samples * (1e6f / GYRO_RATE);
_fifo_accel_samples = roundf(math::min(_fifo_empty_interval_us / (1e6f / ACCEL_RATE), (float)FIFO_MAX_SAMPLES));
_px4_accel.set_update_rate(1e6f / _fifo_empty_interval_us);
_px4_gyro.set_update_rate(1e6f / _fifo_empty_interval_us);
}
void ICM20948::SelectRegisterBank(enum REG_BANK_SEL_BIT bank)
{
if (bank != _last_register_bank) {
// select BANK_0
uint8_t cmd_bank_sel[2] {};
cmd_bank_sel[0] = static_cast<uint8_t>(Register::BANK_0::REG_BANK_SEL);
cmd_bank_sel[1] = bank;
transfer(cmd_bank_sel, cmd_bank_sel, sizeof(cmd_bank_sel));
_last_register_bank = bank;
}
}
bool ICM20948::Configure()
{
bool success = true;
for (const auto &reg : _register_bank0_cfg) {
if (!RegisterCheck(reg)) {
success = false;
}
}
for (const auto &reg : _register_bank2_cfg) {
if (!RegisterCheck(reg)) {
success = false;
}
}
for (const auto &reg : _register_bank3_cfg) {
if (!RegisterCheck(reg)) {
success = false;
}
}
ConfigureAccel();
ConfigureGyro();
return success;
}
int ICM20948::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
static_cast<ICM20948 *>(arg)->DataReady();
return 0;
}
void ICM20948::DataReady()
{
perf_count(_drdy_interval_perf);
if (_data_ready_count.fetch_add(1) >= (_fifo_gyro_samples - 1)) {
_data_ready_count.store(0);
_fifo_watermark_interrupt_timestamp = hrt_absolute_time();
_fifo_read_samples.store(_fifo_gyro_samples);
ScheduleNow();
}
}
bool ICM20948::DataReadyInterruptConfigure()
{
if (_drdy_gpio == 0) {
return false;
}
// Setup data ready on falling edge
return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
}
bool ICM20948::DataReadyInterruptDisable()
{
if (_drdy_gpio == 0) {
return false;
}
return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
}
template <typename T>
bool ICM20948::RegisterCheck(const T &reg_cfg, bool notify)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
if (!success) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
if (notify) {
perf_count(_bad_register_perf);
_px4_accel.increase_error_count();
_px4_gyro.increase_error_count();
}
}
return success;
}
template <typename T>
uint8_t ICM20948::RegisterRead(T reg)
{
SelectRegisterBank(reg);
uint8_t cmd[2] {};
cmd[0] = static_cast<uint8_t>(reg) | DIR_READ;
transfer(cmd, cmd, sizeof(cmd));
return cmd[1];
}
template <typename T>
void ICM20948::RegisterWrite(T reg, uint8_t value)
{
SelectRegisterBank(reg);
uint8_t cmd[2] { (uint8_t)reg, value };
transfer(cmd, cmd, sizeof(cmd));
}
template <typename T>
void ICM20948::RegisterSetAndClearBits(T reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = orig_val;
if (setbits) {
val |= setbits;
}
if (clearbits) {
val &= ~clearbits;
}
RegisterWrite(reg, val);
}
uint16_t ICM20948::FIFOReadCount()
{
SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_0);
// read FIFO count
uint8_t fifo_count_buf[3] {};
fifo_count_buf[0] = static_cast<uint8_t>(Register::BANK_0::FIFO_COUNTH) | DIR_READ;
if (transfer(fifo_count_buf, fifo_count_buf, sizeof(fifo_count_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return 0;
}
return combine(fifo_count_buf[1], fifo_count_buf[2]);
}
bool ICM20948::FIFORead(const hrt_abstime &timestamp_sample, uint16_t samples)
{
perf_begin(_transfer_perf);
SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_0);
FIFOTransferBuffer buffer{};
const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 3, FIFO::SIZE);
if (transfer((uint8_t *)&buffer, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
perf_end(_transfer_perf);
perf_count(_bad_transfer_perf);
return false;
}
perf_end(_transfer_perf);
const uint16_t fifo_count_bytes = combine(buffer.FIFO_COUNTH, buffer.FIFO_COUNTL);
const uint16_t fifo_count_samples = fifo_count_bytes / sizeof(FIFO::DATA);
if (fifo_count_samples == 0) {
perf_count(_fifo_empty_perf);
return false;
}
if (fifo_count_bytes >= FIFO::SIZE) {
perf_count(_fifo_overflow_perf);
FIFOReset();
return false;
}
const uint16_t valid_samples = math::min(samples, fifo_count_samples);
if (fifo_count_samples < samples) {
// force check if there is somehow fewer samples actually in the FIFO (potentially a serious error)
_force_fifo_count_check = true;
} else if (fifo_count_samples >= samples + 2) {
// if we're more than a couple samples behind force FIFO_COUNT check
_force_fifo_count_check = true;
} else {
// skip earlier FIFO_COUNT and trust DRDY count if we're in sync
_force_fifo_count_check = false;
}
if (valid_samples > 0) {
ProcessGyro(timestamp_sample, buffer, valid_samples);
if (ProcessAccel(timestamp_sample, buffer, valid_samples)) {
return true;
}
}
// force FIFO count check if there was any other error
_force_fifo_count_check = true;
return false;
}
void ICM20948::FIFOReset()
{
perf_count(_fifo_reset_perf);
// FIFO_RST: reset FIFO
RegisterSetBits(Register::BANK_0::FIFO_RST, FIFO_RST_BIT::FIFO_RESET);
RegisterClearBits(Register::BANK_0::FIFO_RST, FIFO_RST_BIT::FIFO_RESET);
// reset while FIFO is disabled
_data_ready_count.store(0);
_fifo_watermark_interrupt_timestamp = 0;
_fifo_read_samples.store(0);
}
static bool fifo_accel_equal(const FIFO::DATA &f0, const FIFO::DATA &f1)
{
return (memcmp(&f0.ACCEL_XOUT_H, &f1.ACCEL_XOUT_H, 6) == 0);
}
bool ICM20948::ProcessAccel(const hrt_abstime &timestamp_sample, const FIFOTransferBuffer &buffer,
const uint8_t samples)
{
PX4Accelerometer::FIFOSample accel;
accel.timestamp_sample = timestamp_sample;
accel.dt = _fifo_empty_interval_us / _fifo_accel_samples;
bool bad_data = false;
// accel data is doubled in FIFO, but might be shifted
int accel_first_sample = 1;
if (samples >= 4) {
if (fifo_accel_equal(buffer.f[0], buffer.f[1]) && fifo_accel_equal(buffer.f[2], buffer.f[3])) {
// [A0, A1, A2, A3]
// A0==A1, A2==A3
accel_first_sample = 1;
} else if (fifo_accel_equal(buffer.f[1], buffer.f[2])) {
// [A0, A1, A2, A3]
// A0, A1==A2, A3
accel_first_sample = 0;
} else {
perf_count(_bad_transfer_perf);
bad_data = true;
}
}
int accel_samples = 0;
for (int i = accel_first_sample; i < samples; i = i + 2) {
const FIFO::DATA &fifo_sample = buffer.f[i];
int16_t accel_x = combine(fifo_sample.ACCEL_XOUT_H, fifo_sample.ACCEL_XOUT_L);
int16_t accel_y = combine(fifo_sample.ACCEL_YOUT_H, fifo_sample.ACCEL_YOUT_L);
int16_t accel_z = combine(fifo_sample.ACCEL_ZOUT_H, fifo_sample.ACCEL_ZOUT_L);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
accel.x[accel_samples] = accel_x;
accel.y[accel_samples] = (accel_y == INT16_MIN) ? INT16_MAX : -accel_y;
accel.z[accel_samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
accel_samples++;
}
accel.samples = accel_samples;
_px4_accel.updateFIFO(accel);
return !bad_data;
}
void ICM20948::ProcessGyro(const hrt_abstime &timestamp_sample, const FIFOTransferBuffer &buffer, const uint8_t samples)
{
PX4Gyroscope::FIFOSample gyro;
gyro.timestamp_sample = timestamp_sample;
gyro.samples = samples;
gyro.dt = _fifo_empty_interval_us / _fifo_gyro_samples;
for (int i = 0; i < samples; i++) {
const FIFO::DATA &fifo_sample = buffer.f[i];
const int16_t gyro_x = combine(fifo_sample.GYRO_XOUT_H, fifo_sample.GYRO_XOUT_L);
const int16_t gyro_y = combine(fifo_sample.GYRO_YOUT_H, fifo_sample.GYRO_YOUT_L);
const int16_t gyro_z = combine(fifo_sample.GYRO_ZOUT_H, fifo_sample.GYRO_ZOUT_L);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
gyro.x[i] = gyro_x;
gyro.y[i] = (gyro_y == INT16_MIN) ? INT16_MAX : -gyro_y;
gyro.z[i] = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
}
_px4_gyro.updateFIFO(gyro);
}
void ICM20948::UpdateTemperature()
{
SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_0);
// read current temperature
uint8_t temperature_buf[3] {};
temperature_buf[0] = static_cast<uint8_t>(Register::BANK_0::TEMP_OUT_H) | DIR_READ;
if (transfer(temperature_buf, temperature_buf, sizeof(temperature_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return;
}
const int16_t TEMP_OUT = combine(temperature_buf[1], temperature_buf[2]);
const float TEMP_degC = (TEMP_OUT / TEMPERATURE_SENSITIVITY) + TEMPERATURE_OFFSET;
if (PX4_ISFINITE(TEMP_degC)) {
_px4_accel.set_temperature(TEMP_degC);
_px4_gyro.set_temperature(TEMP_degC);
if (_slave_ak09916_magnetometer) {
_slave_ak09916_magnetometer->set_temperature(TEMP_degC);
}
}
}
void ICM20948::I2CSlaveRegisterStartRead(uint8_t slave_i2c_addr, uint8_t reg)
{
I2CSlaveExternalSensorDataEnable(slave_i2c_addr, reg, 1);
}
void ICM20948::I2CSlaveRegisterWrite(uint8_t slave_i2c_addr, uint8_t reg, uint8_t val)
{
RegisterWrite(Register::BANK_3::I2C_SLV0_ADDR, slave_i2c_addr);
RegisterWrite(Register::BANK_3::I2C_SLV0_REG, reg);
RegisterWrite(Register::BANK_3::I2C_SLV0_DO, val);
RegisterSetBits(Register::BANK_3::I2C_SLV0_CTRL, 1);
}
void ICM20948::I2CSlaveExternalSensorDataEnable(uint8_t slave_i2c_addr, uint8_t reg, uint8_t size)
{
//RegisterWrite(Register::I2C_SLV0_ADDR, 0); // disable slave
RegisterWrite(Register::BANK_3::I2C_SLV0_ADDR, slave_i2c_addr | I2C_SLV0_ADDR_BIT::I2C_SLV0_RNW);
RegisterWrite(Register::BANK_3::I2C_SLV0_REG, reg);
RegisterWrite(Register::BANK_3::I2C_SLV0_CTRL, size | I2C_SLV0_CTRL_BIT::I2C_SLV0_EN);
}
bool ICM20948::I2CSlaveExternalSensorDataRead(uint8_t *buffer, uint8_t length)
{
bool ret = false;
if (buffer != nullptr && length <= 24) {
SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_0);
// max EXT_SENS_DATA 24 bytes
uint8_t transfer_buffer[24 + 1] {};
transfer_buffer[0] = static_cast<uint8_t>(Register::BANK_0::EXT_SLV_SENS_DATA_00) | DIR_READ;
if (transfer(transfer_buffer, transfer_buffer, length + 1) == PX4_OK) {
ret = true;
}
// copy data after cmd back to return buffer
memcpy(buffer, &transfer_buffer[1], length);
}
return ret;
}

225
src/drivers/imu/invensense/icm20948/ICM20948.hpp

@ -0,0 +1,225 @@ @@ -0,0 +1,225 @@
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ICM20948.hpp
*
* Driver for the Invensense ICM20948 connected via SPI.
*
*/
#pragma once
#include "InvenSense_ICM20948_registers.hpp"
#include <drivers/drv_hrt.h>
#include <lib/drivers/accelerometer/PX4Accelerometer.hpp>
#include <lib/drivers/device/spi.h>
#include <lib/drivers/gyroscope/PX4Gyroscope.hpp>
#include <lib/ecl/geo/geo.h>
#include <lib/perf/perf_counter.h>
#include <px4_platform_common/atomic.h>
#include <px4_platform_common/i2c_spi_buses.h>
#include "ICM20948_AK09916.hpp"
using namespace InvenSense_ICM20948;
class ICM20948 : public device::SPI, public I2CSPIDriver<ICM20948>
{
public:
ICM20948(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation, int bus_frequency,
spi_mode_e spi_mode, spi_drdy_gpio_t drdy_gpio, bool enable_magnetometer = false);
~ICM20948() override;
static I2CSPIDriverBase *instantiate(const BusCLIArguments &cli, const BusInstanceIterator &iterator,
int runtime_instance);
static void print_usage();
void RunImpl();
int init() override;
void print_status() override;
private:
void exit_and_cleanup() override;
// Sensor Configuration
static constexpr float FIFO_SAMPLE_DT{1e6f / 9000.f};
static constexpr uint32_t SAMPLES_PER_TRANSFER{2}; // ensure at least 1 new accel sample per transfer
static constexpr float GYRO_RATE{1e6f / FIFO_SAMPLE_DT}; // 9000 Hz gyro
static constexpr float ACCEL_RATE{GYRO_RATE / 2.f}; // 4500 Hz accel
static constexpr uint32_t FIFO_MAX_SAMPLES{math::min(FIFO::SIZE / sizeof(FIFO::DATA), sizeof(PX4Gyroscope::FIFOSample::x) / sizeof(PX4Gyroscope::FIFOSample::x[0]))};
// Transfer data
struct FIFOTransferBuffer {
uint8_t cmd{static_cast<uint8_t>(Register::BANK_0::FIFO_COUNTH) | DIR_READ};
uint8_t FIFO_COUNTH{0};
uint8_t FIFO_COUNTL{0};
FIFO::DATA f[FIFO_MAX_SAMPLES] {};
};
// ensure no struct padding
static_assert(sizeof(FIFOTransferBuffer) == (3 + FIFO_MAX_SAMPLES *sizeof(FIFO::DATA)));
struct register_bank0_config_t {
Register::BANK_0 reg;
uint8_t set_bits{0};
uint8_t clear_bits{0};
};
struct register_bank2_config_t {
Register::BANK_2 reg;
uint8_t set_bits{0};
uint8_t clear_bits{0};
};
struct register_bank3_config_t {
Register::BANK_3 reg;
uint8_t set_bits{0};
uint8_t clear_bits{0};
};
int probe() override;
bool Reset();
bool Configure();
void ConfigureAccel();
void ConfigureGyro();
void ConfigureSampleRate(int sample_rate);
void SelectRegisterBank(enum REG_BANK_SEL_BIT bank);
void SelectRegisterBank(Register::BANK_0 reg) { SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_0); }
void SelectRegisterBank(Register::BANK_2 reg) { SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_2); }
void SelectRegisterBank(Register::BANK_3 reg) { SelectRegisterBank(REG_BANK_SEL_BIT::USER_BANK_3); }
static int DataReadyInterruptCallback(int irq, void *context, void *arg);
void DataReady();
bool DataReadyInterruptConfigure();
bool DataReadyInterruptDisable();
template <typename T> bool RegisterCheck(const T &reg_cfg, bool notify = false);
template <typename T> uint8_t RegisterRead(T reg);
template <typename T> void RegisterWrite(T reg, uint8_t value);
template <typename T> void RegisterSetAndClearBits(T reg, uint8_t setbits, uint8_t clearbits);
template <typename T> void RegisterSetBits(T reg, uint8_t setbits) { RegisterSetAndClearBits(reg, setbits, 0); }
template <typename T> void RegisterClearBits(T reg, uint8_t clearbits) { RegisterSetAndClearBits(reg, 0, clearbits); }
uint16_t FIFOReadCount();
bool FIFORead(const hrt_abstime &timestamp_sample, uint16_t samples);
void FIFOReset();
bool ProcessAccel(const hrt_abstime &timestamp_sample, const FIFOTransferBuffer &buffer, const uint8_t samples);
void ProcessGyro(const hrt_abstime &timestamp_sample, const FIFOTransferBuffer &buffer, const uint8_t samples);
void UpdateTemperature();
const spi_drdy_gpio_t _drdy_gpio;
// I2C AUX interface (slave 1 - 4)
friend class AKM_AK09916::ICM20948_AK09916;
void I2CSlaveRegisterStartRead(uint8_t slave_i2c_addr, uint8_t reg);
void I2CSlaveRegisterWrite(uint8_t slave_i2c_addr, uint8_t reg, uint8_t val);
void I2CSlaveExternalSensorDataEnable(uint8_t slave_i2c_addr, uint8_t reg, uint8_t size);
bool I2CSlaveExternalSensorDataRead(uint8_t *buffer, uint8_t length);
AKM_AK09916::ICM20948_AK09916 *_slave_ak09916_magnetometer{nullptr};
PX4Accelerometer _px4_accel;
PX4Gyroscope _px4_gyro;
perf_counter_t _transfer_perf{perf_alloc(PC_ELAPSED, MODULE_NAME": transfer")};
perf_counter_t _bad_register_perf{perf_alloc(PC_COUNT, MODULE_NAME": bad register")};
perf_counter_t _bad_transfer_perf{perf_alloc(PC_COUNT, MODULE_NAME": bad transfer")};
perf_counter_t _fifo_empty_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO empty")};
perf_counter_t _fifo_overflow_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO overflow")};
perf_counter_t _fifo_reset_perf{perf_alloc(PC_COUNT, MODULE_NAME": FIFO reset")};
perf_counter_t _drdy_interval_perf{perf_alloc(PC_INTERVAL, MODULE_NAME": DRDY interval")};
hrt_abstime _reset_timestamp{0};
hrt_abstime _last_config_check_timestamp{0};
hrt_abstime _fifo_watermark_interrupt_timestamp{0};
hrt_abstime _temperature_update_timestamp{0};
enum REG_BANK_SEL_BIT _last_register_bank {REG_BANK_SEL_BIT::USER_BANK_0};
px4::atomic<uint8_t> _data_ready_count{0};
px4::atomic<uint8_t> _fifo_read_samples{0};
bool _data_ready_interrupt_enabled{false};
bool _force_fifo_count_check{true};
enum class STATE : uint8_t {
RESET,
WAIT_FOR_RESET,
CONFIGURE,
FIFO_READ,
};
STATE _state{STATE::RESET};
uint16_t _fifo_empty_interval_us{1250}; // default 1250 us / 800 Hz transfer interval
uint8_t _fifo_gyro_samples{static_cast<uint8_t>(_fifo_empty_interval_us / (1000000 / GYRO_RATE))};
uint8_t _fifo_accel_samples{static_cast<uint8_t>(_fifo_empty_interval_us / (1000000 / ACCEL_RATE))};
uint8_t _checked_register_bank0{0};
static constexpr uint8_t size_register_bank0_cfg{6};
register_bank0_config_t _register_bank0_cfg[size_register_bank0_cfg] {
// Register | Set bits, Clear bits
{ Register::BANK_0::USER_CTRL, USER_CTRL_BIT::FIFO_EN | USER_CTRL_BIT::I2C_MST_EN | USER_CTRL_BIT::I2C_IF_DIS, USER_CTRL_BIT::DMP_EN },
{ Register::BANK_0::PWR_MGMT_1, PWR_MGMT_1_BIT::CLKSEL_0, PWR_MGMT_1_BIT::DEVICE_RESET | PWR_MGMT_1_BIT::SLEEP },
{ Register::BANK_0::INT_PIN_CFG, INT_PIN_CFG_BIT::INT1_ACTL, 0 },
{ Register::BANK_0::INT_ENABLE_1, INT_ENABLE_1_BIT::RAW_DATA_0_RDY_EN, 0 },
{ Register::BANK_0::FIFO_EN_2, FIFO_EN_2_BIT::ACCEL_FIFO_EN | FIFO_EN_2_BIT::GYRO_Z_FIFO_EN | FIFO_EN_2_BIT::GYRO_Y_FIFO_EN | FIFO_EN_2_BIT::GYRO_X_FIFO_EN, FIFO_EN_2_BIT::TEMP_FIFO_EN },
{ Register::BANK_0::FIFO_MODE, FIFO_MODE_BIT::Snapshot, 0 },
// { Register::BANK_0::FIFO_CFG, FIFO_CFG_BIT::FIFO_CFG, 0 }, // TODO: enable data ready interrupt
};
uint8_t _checked_register_bank2{0};
static constexpr uint8_t size_register_bank2_cfg{2};
register_bank2_config_t _register_bank2_cfg[size_register_bank2_cfg] {
// Register | Set bits, Clear bits
{ Register::BANK_2::GYRO_CONFIG_1, GYRO_CONFIG_1_BIT::GYRO_FS_SEL_2000_DPS, GYRO_CONFIG_1_BIT::GYRO_FCHOICE },
{ Register::BANK_2::ACCEL_CONFIG, ACCEL_CONFIG_BIT::ACCEL_FS_SEL_16G, ACCEL_CONFIG_BIT::ACCEL_FCHOICE },
};
uint8_t _checked_register_bank3{0};
static constexpr uint8_t size_register_bank3_cfg{4};
register_bank3_config_t _register_bank3_cfg[size_register_bank3_cfg] {
// Register | Set bits, Clear bits
{ Register::BANK_3::I2C_MST_ODR_CONFIG, 0, 0 },
{ Register::BANK_3::I2C_MST_CTRL, 0, 0 },
{ Register::BANK_3::I2C_MST_DELAY_CTRL, 0, 0 },
{ Register::BANK_3::I2C_SLV4_CTRL, 0, 0 },
};
};

298
src/drivers/imu/invensense/icm20948/ICM20948_AK09916.cpp

@ -0,0 +1,298 @@ @@ -0,0 +1,298 @@
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM20948_AK09916.hpp"
#include "ICM20948.hpp"
using namespace time_literals;
namespace AKM_AK09916
{
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
ICM20948_AK09916::ICM20948_AK09916(ICM20948 &icm20948, enum Rotation rotation) :
ScheduledWorkItem("icm20948_ak09916", px4::device_bus_to_wq(icm20948.get_device_id())),
_icm20948(icm20948),
_px4_mag(icm20948.get_device_id(), ORB_PRIO_DEFAULT, rotation)
{
_px4_mag.set_device_type(DRV_MAG_DEVTYPE_AK09916);
_px4_mag.set_external(icm20948.external());
}
ICM20948_AK09916::~ICM20948_AK09916()
{
ScheduleClear();
perf_free(_transfer_perf);
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_duplicate_data_perf);
perf_free(_data_not_ready);
}
bool ICM20948_AK09916::Init()
{
return Reset();
}
bool ICM20948_AK09916::Reset()
{
_state = STATE::RESET;
ScheduleClear();
ScheduleNow();
return true;
}
void ICM20948_AK09916::PrintInfo()
{
perf_print_counter(_transfer_perf);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_duplicate_data_perf);
perf_print_counter(_data_not_ready);
_px4_mag.print_status();
}
void ICM20948_AK09916::Run()
{
switch (_state) {
case STATE::RESET:
// CNTL3 SRST: Soft reset
RegisterWrite(Register::CNTL3, CNTL3_BIT::SRST);
_reset_timestamp = hrt_absolute_time();
_state = STATE::READ_WHO_AM_I;
ScheduleDelayed(100_ms);
break;
case STATE::READ_WHO_AM_I:
_icm20948.I2CSlaveRegisterStartRead(I2C_ADDRESS_DEFAULT, (uint8_t)Register::WIA);
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(10_ms);
break;
case STATE::WAIT_FOR_RESET: {
uint8_t WIA = 0;
_icm20948.I2CSlaveExternalSensorDataRead(&WIA, 1);
if (WIA == WHOAMI) {
// if reset succeeded then configure
PX4_DEBUG("AK09916 reset successful, configuring");
_state = STATE::CONFIGURE;
ScheduleDelayed(10_ms);
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 100_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 100 ms");
ScheduleDelayed(100_ms);
}
}
}
break;
// TODO: read FUSE ROM (to get ASA corrections)
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading
PX4_DEBUG("AK09916 configure successful, reading");
_icm20948.I2CSlaveExternalSensorDataEnable(I2C_ADDRESS_DEFAULT, (uint8_t)Register::ST1, sizeof(TransferBuffer));
_state = STATE::READ;
ScheduleOnInterval(20_ms, 20_ms); // 50 Hz
} else {
PX4_DEBUG("Configure failed, retrying");
// try again in 100 ms
ScheduleDelayed(100_ms);
}
break;
case STATE::READ: {
perf_begin(_transfer_perf);
TransferBuffer buffer{};
const hrt_abstime timestamp_sample = hrt_absolute_time();
bool success = _icm20948.I2CSlaveExternalSensorDataRead((uint8_t *)&buffer, sizeof(TransferBuffer));
perf_end(_transfer_perf);
if (success && !(buffer.ST2 & ST2_BIT::HOFL) && (buffer.ST1 & ST1_BIT::DRDY)) {
// sensor's frame is +y forward (x), -x right, +z down
int16_t x = combine(buffer.HYH, buffer.HYL); // +Y
int16_t y = combine(buffer.HXH, buffer.HXL); // +X
y = (y == INT16_MIN) ? INT16_MAX : -y; // flip y
int16_t z = combine(buffer.HZH, buffer.HZL);
const bool all_zero = (x == 0 && y == 0 && z == 0);
const bool new_data = (_last_measurement[0] != x || _last_measurement[1] != y || _last_measurement[2] != z);
if (!new_data) {
perf_count(_duplicate_data_perf);
}
if (!all_zero && new_data) {
_px4_mag.update(timestamp_sample, x, y, z);
_last_measurement[0] = x;
_last_measurement[1] = y;
_last_measurement[2] = z;
} else {
success = false;
}
} else {
perf_count(_data_not_ready);
}
if (!success) {
perf_count(_bad_transfer_perf);
}
}
break;
}
}
bool ICM20948_AK09916::Configure()
{
bool success = true;
for (const auto &reg : _register_cfg) {
if (!RegisterCheck(reg)) {
success = false;
}
}
// TODO: read ASA and set sensitivity
//const uint8_t ASAX = RegisterRead(Register::ASAX);
//const uint8_t ASAY = RegisterRead(Register::ASAY);
//const uint8_t ASAZ = RegisterRead(Register::ASAZ);
// float ak8963_ASA[3] {};
// for (int i = 0; i < 3; i++) {
// if (0 != response[i] && 0xff != response[i]) {
// ak8963_ASA[i] = ((float)(response[i] - 128) / 256.0f) + 1.0f;
// } else {
// return false;
// }
// }
// _px4_mag.set_sensitivity(ak8963_ASA[0], ak8963_ASA[1], ak8963_ASA[2]);
// in 16-bit sampling mode the mag resolution is 1.5 milli Gauss per bit */
_px4_mag.set_scale(1.5e-3f);
return success;
}
bool ICM20948_AK09916::RegisterCheck(const register_config_t &reg_cfg, bool notify)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
if (!success) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
if (notify) {
perf_count(_bad_register_perf);
_px4_mag.increase_error_count();
}
}
return success;
}
uint8_t ICM20948_AK09916::RegisterRead(Register reg)
{
// TODO: use slave 4 and check register
_icm20948.I2CSlaveRegisterStartRead(I2C_ADDRESS_DEFAULT, static_cast<uint8_t>(reg));
usleep(1000);
uint8_t buffer{};
_icm20948.I2CSlaveExternalSensorDataRead(&buffer, 1);
return buffer;
}
void ICM20948_AK09916::RegisterWrite(Register reg, uint8_t value)
{
return _icm20948.I2CSlaveRegisterWrite(I2C_ADDRESS_DEFAULT, static_cast<uint8_t>(reg), value);
}
void ICM20948_AK09916::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = orig_val;
if (setbits) {
val |= setbits;
}
if (clearbits) {
val &= ~clearbits;
}
RegisterWrite(reg, val);
}
} // namespace AKM_AK09916

133
src/drivers/imu/invensense/icm20948/ICM20948_AK09916.hpp

@ -0,0 +1,133 @@ @@ -0,0 +1,133 @@
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ICM20948_AK09916.hpp
*
* Driver for the AKM AK09916 connected via I2C.
*
*/
#pragma once
#include "AKM_AK09916_registers.hpp"
#include <drivers/drv_hrt.h>
#include <lib/drivers/device/i2c.h>
#include <lib/drivers/magnetometer/PX4Magnetometer.hpp>
#include <lib/perf/perf_counter.h>
#include <px4_platform_common/atomic.h>
#include <px4_platform_common/px4_work_queue/ScheduledWorkItem.hpp>
class ICM20948;
namespace AKM_AK09916
{
class ICM20948_AK09916 : public px4::ScheduledWorkItem
{
public:
ICM20948_AK09916(ICM20948 &icm20948, enum Rotation rotation = ROTATION_NONE);
~ICM20948_AK09916() override;
bool Init();
bool Reset();
void PrintInfo();
void set_temperature(float temperature) { _px4_mag.set_temperature(temperature); }
private:
struct TransferBuffer {
uint8_t ST1;
uint8_t HXL;
uint8_t HXH;
uint8_t HYL;
uint8_t HYH;
uint8_t HZL;
uint8_t HZH;
uint8_t TMPS;
uint8_t ST2;
};
struct register_config_t {
AKM_AK09916::Register reg;
uint8_t set_bits{0};
uint8_t clear_bits{0};
};
int probe();
void Run() override;
bool Configure();
bool RegisterCheck(const register_config_t &reg_cfg, bool notify = false);
uint8_t RegisterRead(AKM_AK09916::Register reg);
void RegisterWrite(AKM_AK09916::Register reg, uint8_t value);
void RegisterSetAndClearBits(AKM_AK09916::Register reg, uint8_t setbits, uint8_t clearbits);
ICM20948 &_icm20948;
PX4Magnetometer _px4_mag;
perf_counter_t _transfer_perf{perf_alloc(PC_ELAPSED, MODULE_NAME"_ak09916: transfer")};
perf_counter_t _bad_register_perf{perf_alloc(PC_COUNT, MODULE_NAME"_ak09916: bad register")};
perf_counter_t _bad_transfer_perf{perf_alloc(PC_COUNT, MODULE_NAME"_ak09916: bad transfer")};
perf_counter_t _duplicate_data_perf{perf_alloc(PC_COUNT, MODULE_NAME"_ak09916: duplicate data")};
perf_counter_t _data_not_ready{perf_alloc(PC_COUNT, MODULE_NAME"_ak09916: data not ready")};
hrt_abstime _reset_timestamp{0};
hrt_abstime _last_config_check_timestamp{0};
int16_t _last_measurement[3] {};
uint8_t _checked_register{0};
enum class STATE : uint8_t {
RESET,
READ_WHO_AM_I,
WAIT_FOR_RESET,
CONFIGURE,
READ,
} _state{STATE::RESET};;
static constexpr uint8_t size_register_cfg{1};
register_config_t _register_cfg[size_register_cfg] {
// Register | Set bits, Clear bits
{ AKM_AK09916::Register::CNTL2, AKM_AK09916::CNTL2_BIT::MODE3, (uint8_t)~AKM_AK09916::CNTL2_BIT::MODE3 },
};
};
} // namespace AKM_AK09916

272
src/drivers/imu/invensense/icm20948/InvenSense_ICM20948_registers.hpp

@ -0,0 +1,272 @@ @@ -0,0 +1,272 @@
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file InvenSense_ICM20948_registers.hpp
*
* Invensense ICM-20948 registers.
*
*/
#pragma once
#include <cstdint>
namespace InvenSense_ICM20948
{
// TODO: move to a central header
static constexpr uint8_t Bit0 = (1 << 0);
static constexpr uint8_t Bit1 = (1 << 1);
static constexpr uint8_t Bit2 = (1 << 2);
static constexpr uint8_t Bit3 = (1 << 3);
static constexpr uint8_t Bit4 = (1 << 4);
static constexpr uint8_t Bit5 = (1 << 5);
static constexpr uint8_t Bit6 = (1 << 6);
static constexpr uint8_t Bit7 = (1 << 7);
static constexpr uint32_t SPI_SPEED = 7 * 1000 * 1000; // 7 MHz SPI
static constexpr uint8_t DIR_READ = 0x80;
static constexpr uint8_t WHOAMI = 0xEA;
static constexpr float TEMPERATURE_SENSITIVITY = 333.87f; // LSB/C
static constexpr float TEMPERATURE_OFFSET = 21.f; // C
namespace Register
{
enum class BANK_0 : uint8_t {
WHO_AM_I = 0x00,
USER_CTRL = 0x03,
PWR_MGMT_1 = 0x06,
INT_PIN_CFG = 0x0F,
INT_ENABLE_1 = 0x11,
I2C_MST_STATUS = 0x17,
TEMP_OUT_H = 0x39,
TEMP_OUT_L = 0x3A,
EXT_SLV_SENS_DATA_00 = 0x3B,
// [EXT_SLV_SENS_DATA_01, EXT_SLV_SENS_DATA_22]
EXT_SLV_SENS_DATA_23 = 0x52,
FIFO_EN_2 = 0x67,
FIFO_RST = 0x68,
FIFO_MODE = 0x69,
FIFO_COUNTH = 0x70,
FIFO_COUNTL = 0x71,
FIFO_R_W = 0x72,
FIFO_CFG = 0x76,
REG_BANK_SEL = 0x7F,
};
enum class BANK_2 : uint8_t {
GYRO_CONFIG_1 = 0x01,
ACCEL_CONFIG = 0x14,
REG_BANK_SEL = 0x7F,
};
enum class BANK_3 : uint8_t {
I2C_MST_ODR_CONFIG = 0x00,
I2C_MST_CTRL = 0x01,
I2C_MST_DELAY_CTRL = 0x02,
I2C_SLV0_ADDR = 0x03,
I2C_SLV0_REG = 0x04,
I2C_SLV0_CTRL = 0x05,
I2C_SLV0_DO = 0x06,
I2C_SLV4_CTRL = 0x15,
REG_BANK_SEL = 0x7F,
};
};
//---------------- BANK0 Register bits
// USER_CTRL
enum USER_CTRL_BIT : uint8_t {
DMP_EN = Bit7,
FIFO_EN = Bit6,
I2C_MST_EN = Bit5, // Enable the I2C Master I/F module
I2C_IF_DIS = Bit4, // Reset I2C Slave module and put the serial interface in SPI mode only
DMP_RST = Bit3, // Reset DMP module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock.
SRAM_RST = Bit2, // Reset SRAM module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock.
I2C_MST_RST = Bit1, // Reset I2C Master module.
};
// PWR_MGMT_1
enum PWR_MGMT_1_BIT : uint8_t {
DEVICE_RESET = Bit7,
SLEEP = Bit6,
CLKSEL_2 = Bit2,
CLKSEL_1 = Bit1,
CLKSEL_0 = Bit0,
};
// INT_PIN_CFG
enum INT_PIN_CFG_BIT : uint8_t {
INT1_ACTL = Bit7,
};
// INT_ENABLE_1
enum INT_ENABLE_1_BIT : uint8_t {
RAW_DATA_0_RDY_EN = Bit0,
};
// FIFO_EN_2
enum FIFO_EN_2_BIT : uint8_t {
ACCEL_FIFO_EN = Bit4,
GYRO_Z_FIFO_EN = Bit3,
GYRO_Y_FIFO_EN = Bit2,
GYRO_X_FIFO_EN = Bit1,
TEMP_FIFO_EN = Bit0,
};
// FIFO_RST
enum FIFO_RST_BIT : uint8_t {
FIFO_RESET = Bit4 | Bit3 | Bit2 | Bit1 | Bit0,
};
// FIFO_MODE
enum FIFO_MODE_BIT : uint8_t {
Snapshot = Bit0,
};
// FIFO_CFG
enum FIFO_CFG_BIT : uint8_t {
FIFO_CFG = Bit0,
};
// REG_BANK_SEL
enum REG_BANK_SEL_BIT : uint8_t {
USER_BANK_0 = 0, // 0: Select USER BANK 0.
USER_BANK_1 = Bit4, // 1: Select USER BANK 1.
USER_BANK_2 = Bit5, // 2: Select USER BANK 2.
USER_BANK_3 = Bit5 | Bit4, // 3: Select USER BANK 3.
};
//---------------- BANK2 Register bits
// GYRO_CONFIG_1
enum GYRO_CONFIG_1_BIT : uint8_t {
// GYRO_FS_SEL[1:0]
GYRO_FS_SEL_250_DPS = 0, // 0b00 = ±250 dps
GYRO_FS_SEL_500_DPS = Bit1, // 0b01 = ±500 dps
GYRO_FS_SEL_1000_DPS = Bit2, // 0b10 = ±1000 dps
GYRO_FS_SEL_2000_DPS = Bit2 | Bit1, // 0b11 = ±2000 dps
GYRO_FCHOICE = Bit0, // 0 – Bypass gyro DLPF
};
// ACCEL_CONFIG
enum ACCEL_CONFIG_BIT : uint8_t {
// ACCEL_FS_SEL[1:0]
ACCEL_FS_SEL_2G = 0, // 0b00: ±2g
ACCEL_FS_SEL_4G = Bit1, // 0b01: ±4g
ACCEL_FS_SEL_8G = Bit2, // 0b10: ±8g
ACCEL_FS_SEL_16G = Bit2 | Bit1, // 0b11: ±16g
ACCEL_FCHOICE = Bit0, // 0: Bypass accel DLPF
};
//---------------- BANK3 Register bits
// I2C_MST_CTRL
enum I2C_MST_CTRL_BIT : uint8_t {
I2C_MST_P_NSR = Bit4, // I2C Master’s transition from one slave read to the next slave read
// I2C_MST_CLK [3:0]
I2C_MST_CLK_400_kHz = 7, // To achieve a targeted clock frequency of 400 kHz, MAX, it is recommended to set I2C_MST_CLK = 7 (345.6 kHz / 46.67% duty cycle)
};
// I2C_MST_DELAY_CTRL
enum I2C_MST_DELAY_CTRL_BIT : uint8_t {
I2C_SLVX_DLY_EN = Bit4 | Bit3 | Bit2 | Bit1 | Bit0, // limit all slave access (1+I2C_MST_DLY)
};
// I2C_SLV0_ADDR
enum I2C_SLV0_ADDR_BIT : uint8_t {
I2C_SLV0_RNW = Bit7, // 1 – Transfer is a read
// I2C_ID_0[6:0]
I2C_ID_0 = Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0, // Physical address of I2C slave 0
};
// I2C_SLV0_CTRL
enum I2C_SLV0_CTRL_BIT : uint8_t {
I2C_SLV0_EN = Bit7, // Enable reading data from this slave
I2C_SLV0_BYTE_SW = Bit6, // Swap bytes when reading both the low and high byte of a word
I2C_SLV0_REG_DIS = Bit5, // transaction does not write a register value (only read data)
I2C_SLV0_LENG = Bit3 | Bit2 | Bit1 | Bit0, // Number of bytes to be read from I2C slave 0
};
// I2C_SLV4_CTRL
enum I2C_SLV4_CTRL_BIT : uint8_t {
// I2C_MST_DLY[4:0]
I2C_MST_DLY = Bit4 | Bit3 | Bit2 | Bit1 | Bit0,
};
namespace FIFO
{
static constexpr size_t SIZE = 512;
// FIFO_DATA layout when FIFO_EN has ACCEL_FIFO_EN and GYRO_{Z, Y, X}_FIFO_EN set
struct DATA {
uint8_t ACCEL_XOUT_H;
uint8_t ACCEL_XOUT_L;
uint8_t ACCEL_YOUT_H;
uint8_t ACCEL_YOUT_L;
uint8_t ACCEL_ZOUT_H;
uint8_t ACCEL_ZOUT_L;
uint8_t GYRO_XOUT_H;
uint8_t GYRO_XOUT_L;
uint8_t GYRO_YOUT_H;
uint8_t GYRO_YOUT_L;
uint8_t GYRO_ZOUT_H;
uint8_t GYRO_ZOUT_L;
};
}
} // namespace InvenSense_ICM20948

112
src/drivers/imu/invensense/icm20948/icm20948_main.cpp

@ -0,0 +1,112 @@ @@ -0,0 +1,112 @@
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM20948.hpp"
#include <px4_platform_common/getopt.h>
#include <px4_platform_common/module.h>
void ICM20948::print_usage()
{
PRINT_MODULE_USAGE_NAME("icm20948", "driver");
PRINT_MODULE_USAGE_SUBCATEGORY("imu");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_PARAMS_I2C_SPI_DRIVER(false, true);
PRINT_MODULE_USAGE_PARAM_FLAG('M', "Enable Magnetometer (AK8963)", true);
PRINT_MODULE_USAGE_PARAM_INT('R', 0, 0, 35, "Rotation", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
}
I2CSPIDriverBase *ICM20948::instantiate(const BusCLIArguments &cli, const BusInstanceIterator &iterator,
int runtime_instance)
{
bool mag = (cli.custom1 == 1);
ICM20948 *instance = new ICM20948(iterator.configuredBusOption(), iterator.bus(), iterator.devid(), cli.rotation,
cli.bus_frequency, cli.spi_mode, iterator.DRDYGPIO(), mag);
if (!instance) {
PX4_ERR("alloc failed");
return nullptr;
}
if (OK != instance->init()) {
delete instance;
return nullptr;
}
return instance;
}
extern "C" int icm20948_main(int argc, char *argv[])
{
int ch;
using ThisDriver = ICM20948;
BusCLIArguments cli{false, true};
cli.default_spi_frequency = SPI_SPEED;
while ((ch = cli.getopt(argc, argv, "MR:")) != EOF) {
switch (ch) {
case 'M':
cli.custom1 = 1;
break;
case 'R':
cli.rotation = (enum Rotation)atoi(cli.optarg());
break;
}
}
const char *verb = cli.optarg();
if (!verb) {
ThisDriver::print_usage();
return -1;
}
BusInstanceIterator iterator(MODULE_NAME, cli, DRV_IMU_DEVTYPE_ICM20948);
if (!strcmp(verb, "start")) {
return ThisDriver::module_start(cli, iterator);
}
if (!strcmp(verb, "stop")) {
return ThisDriver::module_stop(iterator);
}
if (!strcmp(verb, "status")) {
return ThisDriver::module_status(iterator);
}
ThisDriver::print_usage();
return -1;
}
Loading…
Cancel
Save