Browse Source

Add implementation of pseudo-inverse (#102)

* Fix compilation error

* Add implementation of pseudo-inverse

The implementation is based on this publication:
Courrieu, P. (2008). Fast Computation of Moore-Penrose Inverse Matrices, 8(2), 25–29. http://arxiv.org/abs/0804.4809
It is a fully templated implementation to guaranty type correctness.

* Add tests for pseudoinverse

* Apply suggestions from code review

Co-Authored-By: Mathieu Bresciani <brescianimathieu@gmail.com>

* Adapt fullRankCholesky tolerance to type

* Add pseudoinverse test with effectiveness matrix

* Fix coverage

* Fix rebase issue

* Fix SquareMatrix test, add null Matrix test
master
Julien Lecoeur 5 years ago committed by Julian Kent
parent
commit
a172c3cdac
  1. 1
      .gitignore
  2. 2
      matrix/Dcm.hpp
  3. 56
      matrix/PseudoInverse.hpp
  4. 139
      matrix/PseudoInverse.hxx
  5. 1
      matrix/math.hpp
  6. 1
      test/CMakeLists.txt
  7. 139
      test/pseudoInverse.cpp

1
.gitignore vendored

@ -27,6 +27,7 @@ test/matrixAssignment
test/matrixMult test/matrixMult
test/matrixScalarMult test/matrixScalarMult
test/out/ test/out/
test/pseudoinverse
test/setIdentity test/setIdentity
test/slice test/slice
test/squareMatrix test/squareMatrix

2
matrix/Dcm.hpp

@ -65,7 +65,7 @@ public:
* *
* @param _data pointer to array * @param _data pointer to array
*/ */
explicit Dcm(const Type data_[3*3]) : SquareMatrix<Type, 3>(data_) explicit Dcm(const Type data_[9]) : SquareMatrix<Type, 3>(data_)
{ {
} }

56
matrix/PseudoInverse.hpp

@ -0,0 +1,56 @@
/**
* @file PseudoInverse.hpp
*
* Implementation of matrix pseudo inverse
*
* @author Julien Lecoeur <julien.lecoeur@gmail.com>
*/
#pragma once
#include "math.hpp"
namespace matrix
{
/**
* Full rank Cholesky factorization of A
*/
template<typename Type, size_t N>
SquareMatrix<Type, N> fullRankCholesky(const SquareMatrix<Type, N> & A, size_t& rank);
/**
* Geninv implementation detail
*/
template<typename Type, size_t M, size_t N, size_t R> class GeninvImpl;
/**
* Geninv
* Fast pseudoinverse based on full rank cholesky factorisation
*
* Courrieu, P. (2008). Fast Computation of Moore-Penrose Inverse Matrices, 8(2), 2529. http://arxiv.org/abs/0804.4809
*/
template<typename Type, size_t M, size_t N>
Matrix<Type, N, M> geninv(const Matrix<Type, M, N> & G)
{
size_t rank;
if (M <= N) {
SquareMatrix<Type, M> A = G * G.transpose();
SquareMatrix<Type, M> L = fullRankCholesky(A, rank);
return GeninvImpl<Type, M, N, M>::genInvUnderdetermined(G, L, rank);
} else {
SquareMatrix<Type, N> A = G.transpose() * G;
SquareMatrix<Type, N> L = fullRankCholesky(A, rank);
return GeninvImpl<Type, M, N, N>::genInvOverdetermined(G, L, rank);
}
}
#include "PseudoInverse.hxx"
} // namespace matrix
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */

139
matrix/PseudoInverse.hxx

@ -0,0 +1,139 @@
/**
* @file pseudoinverse.hxx
*
* Implementation of matrix pseudo inverse
*
* @author Julien Lecoeur <julien.lecoeur@gmail.com>
*/
/**
* Full rank Cholesky factorization of A
*/
template<typename Type>
void fullRankCholeskyTolerance(Type &tol)
{
tol /= 1000000000;
}
template<> inline
void fullRankCholeskyTolerance<double>(double &tol)
{
tol /= 1000000000000000000.0;
}
template<typename Type, size_t N>
SquareMatrix<Type, N> fullRankCholesky(const SquareMatrix<Type, N> & A,
size_t& rank)
{
// Compute
// dA = np.diag(A)
// tol = np.min(dA[dA > 0]) * 1e-9
Vector<Type, N> d = A.diag();
Type tol = d.max();
for (size_t k = 0; k < N; k++) {
if ((d(k) > 0) && (d(k) < tol)) {
tol = d(k);
}
}
fullRankCholeskyTolerance<Type>(tol);
Matrix<Type, N, N> L;
size_t r = 0;
for (size_t k = 0; k < N; k++) {
if (r == 0) {
for (size_t i = k; i < N; i++) {
L(i, r) = A(i, k);
}
} else {
for (size_t i = k; i < N; i++) {
// Compute LL = L[k:n, :r] * L[k, :r].T
Type LL = Type();
for (size_t j = 0; j < r; j++) {
LL += L(i, j) * L(k, j);
}
L(i, r) = A(i, k) - LL;
}
}
if (L(k, r) > tol) {
L(k, r) = sqrt(L(k, r));
if (k < N - 1) {
for (size_t i = k + 1; i < N; i++) {
L(i, r) = L(i, r) / L(k, r);
}
}
r = r + 1;
}
}
// Return rank
rank = r;
return L;
}
template< typename Type, size_t M, size_t N, size_t R>
class GeninvImpl
{
public:
static Matrix<Type, N, M> genInvUnderdetermined(const Matrix<Type, M, N> & G, const Matrix<Type, M, M> & L, size_t rank)
{
if (rank < R) {
// Recursive call
return GeninvImpl<Type, M, N, R - 1>::genInvUnderdetermined(G, L, rank);
} else if (rank > R) {
// Error
return Matrix<Type, N, M>();
} else {
// R == rank
Matrix<Type, M, R> LL = L. template slice<M, R>(0, 0);
SquareMatrix<Type, R> X = inv(SquareMatrix<Type, R>(LL.transpose() * LL));
return G.transpose() * LL * X * X * LL.transpose();
}
}
static Matrix<Type, N, M> genInvOverdetermined(const Matrix<Type, M, N> & G, const Matrix<Type, N, N> & L, size_t rank)
{
if (rank < R) {
// Recursive call
return GeninvImpl<Type, M, N, R - 1>::genInvOverdetermined(G, L, rank);
} else if (rank > R) {
// Error
return Matrix<Type, N, M>();
} else {
// R == rank
Matrix<Type, N, R> LL = L. template slice<N, R>(0, 0);
SquareMatrix<Type, R> X = inv(SquareMatrix<Type, R>(LL.transpose() * LL));
return LL * X * X * LL.transpose() * G.transpose();
}
}
};
// Partial template specialisation for R==0, allows to stop recursion in genInvUnderdetermined and genInvOverdetermined
template< typename Type, size_t M, size_t N>
class GeninvImpl<Type, M, N, 0>
{
public:
static Matrix<Type, N, M> genInvUnderdetermined(const Matrix<Type, M, N> & G, const Matrix<Type, M, M> & L, size_t rank)
{
return Matrix<Type, N, M>();
}
static Matrix<Type, N, M> genInvOverdetermined(const Matrix<Type, M, N> & G, const Matrix<Type, N, N> & L, size_t rank)
{
return Matrix<Type, N, M>();
}
};

1
matrix/math.hpp

@ -18,3 +18,4 @@
#include "AxisAngle.hpp" #include "AxisAngle.hpp"
#include "LeastSquaresSolver.hpp" #include "LeastSquaresSolver.hpp"
#include "Dual.hpp" #include "Dual.hpp"
#include "PseudoInverse.hpp"

1
test/CMakeLists.txt

@ -20,6 +20,7 @@ set(tests
least_squares least_squares
upperRightTriangle upperRightTriangle
dual dual
pseudoInverse
) )
add_custom_target(test_build) add_custom_target(test_build)

139
test/pseudoInverse.cpp

@ -0,0 +1,139 @@
#include "test_macros.hpp"
#include <matrix/PseudoInverse.hpp>
using namespace matrix;
static const size_t n_large = 20;
int main()
{
// 3x4 Matrix test
float data0[12] = {
0.f, 1.f, 2.f, 3.f,
4.f, 5.f, 6.f, 7.f,
8.f, 9.f, 10.f, 11.f
};
float data0_check[12] = {
-0.3375f, -0.1f, 0.1375f,
-0.13333333f, -0.03333333f, 0.06666667f,
0.07083333f, 0.03333333f, -0.00416667f,
0.275f, 0.1f, -0.075f
};
Matrix<float, 3, 4> A0(data0);
Matrix<float, 4, 3> A0_I = geninv(A0);
Matrix<float, 4, 3> A0_I_check(data0_check);
TEST((A0_I - A0_I_check).abs().max() < 1e-5);
// 4x3 Matrix test
float data1[12] = {
0.f, 4.f, 8.f,
1.f, 5.f, 9.f,
2.f, 6.f, 10.f,
3.f, 7.f, 11.f
};
float data1_check[12] = {
-0.3375f, -0.13333333f, 0.07083333f, 0.275f,
-0.1f, -0.03333333f, 0.03333333f, 0.1f,
0.1375f, 0.06666667f, -0.00416667f, -0.075f
};
Matrix<float, 4, 3> A1(data1);
Matrix<float, 3, 4> A1_I = geninv(A1);
Matrix<float, 3, 4> A1_I_check(data1_check);
TEST((A1_I - A1_I_check).abs().max() < 1e-5);
// Stess test
Matrix<float, n_large, n_large - 1> A_large;
A_large.setIdentity();
Matrix<float, n_large - 1, n_large> A_large_I;
for (size_t i = 0; i < n_large; i++) {
A_large_I = geninv(A_large);
TEST(isEqual(A_large, A_large_I.T()));
}
// Square matrix test
float data2[9] = {0, 2, 3,
4, 5, 6,
7, 8, 10
};
float data2_check[9] = {
-0.4f, -0.8f, 0.6f,
-0.4f, 4.2f, -2.4f,
0.6f, -2.8f, 1.6f
};
SquareMatrix<float, 3> A2(data2);
SquareMatrix<float, 3> A2_I = geninv(A2);
SquareMatrix<float, 3> A2_I_check(data2_check);
TEST((A2_I - A2_I_check).abs().max() < 1e-3);
// Null matrix test
Matrix<float, 6, 16> A3;
Matrix<float, 16, 6> A3_I = geninv(A3);
Matrix<float, 16, 6> A3_I_check;
TEST((A3_I - A3_I_check).abs().max() < 1e-5);
// Mock-up effectiveness matrix
const float B_quad_w[6][16] = {
{-0.5717536f, 0.43756646f, 0.5717536f, -0.43756646f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f},
{ 0.35355328f, -0.35355328f, 0.35355328f, -0.35355328f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f},
{ 0.28323701f, 0.28323701f, -0.28323701f, -0.28323701f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f},
{ 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f},
{ 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f},
{-0.25f, -0.25f, -0.25f, -0.25f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f}
};
Matrix<float, 6, 16> B = Matrix<float, 6, 16>(B_quad_w);
const float A_quad_w[16][6] = {
{ -0.495383f, 0.707107f, 0.765306f, 0.0f, 0.0f, -1.000000f },
{ 0.495383f, -0.707107f, 1.000000f, 0.0f, 0.0f, -1.000000f },
{ 0.495383f, 0.707107f, -0.765306f, 0.0f, 0.0f, -1.000000f },
{ -0.495383f, -0.707107f, -1.000000f, 0.0f, 0.0f, -1.000000f },
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}
};
Matrix<float, 16, 6> A_check = Matrix<float, 16, 6>(A_quad_w);
Matrix<float, 16, 6> A = geninv(B);
TEST((A - A_check).abs().max() < 1e-5);
// Test error case with erroneous rank in internal impl functions
Matrix<float, 2, 2> L;
Matrix<float, 2, 3> GM;
Matrix<float, 3, 2> retM_check;
Matrix<float, 3, 2> retM0 = GeninvImpl<float, 2, 3, 0>::genInvUnderdetermined(GM, L, 5);
Matrix<float, 3, 2> GN;
Matrix<float, 2, 3> retN_check;
Matrix<float, 2, 3> retN0 = GeninvImpl<float, 3, 2, 0>::genInvOverdetermined(GN, L, 5);
TEST((retM0 - retM_check).abs().max() < 1e-5);
TEST((retN0 - retN_check).abs().max() < 1e-5);
Matrix<float, 3, 2> retM1 = GeninvImpl<float, 2, 3, 1>::genInvUnderdetermined(GM, L, 5);
Matrix<float, 2, 3> retN1 = GeninvImpl<float, 3, 2, 1>::genInvOverdetermined(GN, L, 5);
TEST((retM1 - retM_check).abs().max() < 1e-5);
TEST((retN1 - retN_check).abs().max() < 1e-5);
float float_scale = 1.f;
fullRankCholeskyTolerance(float_scale);
double double_scale = 1.;
fullRankCholeskyTolerance(double_scale);
TEST(static_cast<double>(float_scale) > double_scale);
return 0;
}
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */
Loading…
Cancel
Save