@ -86,27 +86,10 @@ void Ekf::fuseMag()
@@ -86,27 +86,10 @@ void Ekf::fuseMag()
float H_MAG [ 24 ] ;
float Kfusion [ 24 ] ;
// update the states and covariance using sequential fusion of the magnetometer components
for ( uint8_t index = 0 ; index < = 2 ; index + + ) {
// Calculate Kalman gains and observation jacobians
if ( index = = 0 ) {
// Calculate X axis observation jacobians
memset ( H_MAG , 0 , sizeof ( H_MAG ) ) ;
H_MAG [ 0 ] = SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ;
H_MAG [ 1 ] = SH_MAG [ 0 ] ;
H_MAG [ 2 ] = - SH_MAG [ 1 ] ;
H_MAG [ 3 ] = SH_MAG [ 2 ] ;
H_MAG [ 16 ] = SH_MAG [ 5 ] - SH_MAG [ 4 ] - SH_MAG [ 3 ] + SH_MAG [ 6 ] ;
H_MAG [ 17 ] = 2.0f * q0 * q3 + 2.0f * q1 * q2 ;
H_MAG [ 18 ] = 2.0f * q1 * q3 - 2.0f * q0 * q2 ;
H_MAG [ 19 ] = 1.0f ;
// intermediate variables
// innovation variance
// X axis innovation variance
_mag_innov_var [ 0 ] = ( P [ 19 ] [ 19 ] + R_MAG + P [ 1 ] [ 19 ] * SH_MAG [ 0 ] - P [ 2 ] [ 19 ] * SH_MAG [ 1 ] + P [ 3 ] [ 19 ] * SH_MAG [ 2 ] - P [ 16 ] [ 19 ] * ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) + ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) * ( P [ 19 ] [ 17 ] + P [ 1 ] [ 17 ] * SH_MAG [ 0 ] - P [ 2 ] [ 17 ] * SH_MAG [ 1 ] + P [ 3 ] [ 17 ] * SH_MAG [ 2 ] - P [ 16 ] [ 17 ] * ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) + P [ 17 ] [ 17 ] * ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) - P [ 18 ] [ 17 ] * ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) + P [ 0 ] [ 17 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) * ( P [ 19 ] [ 18 ] + P [ 1 ] [ 18 ] * SH_MAG [ 0 ] - P [ 2 ] [ 18 ] * SH_MAG [ 1 ] + P [ 3 ] [ 18 ] * SH_MAG [ 2 ] - P [ 16 ] [ 18 ] * ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) + P [ 17 ] [ 18 ] * ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) - P [ 18 ] [ 18 ] * ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) + P [ 0 ] [ 18 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) * ( P [ 19 ] [ 0 ] + P [ 1 ] [ 0 ] * SH_MAG [ 0 ] - P [ 2 ] [ 0 ] * SH_MAG [ 1 ] + P [ 3 ] [ 0 ] * SH_MAG [ 2 ] - P [ 16 ] [ 0 ] * ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) + P [ 17 ] [ 0 ] * ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) - P [ 18 ] [ 0 ] * ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) + P [ 0 ] [ 0 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + P [ 17 ] [ 19 ] * ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) - P [ 18 ] [ 19 ] * ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) + SH_MAG [ 0 ] * ( P [ 19 ] [ 1 ] + P [ 1 ] [ 1 ] * SH_MAG [ 0 ] - P [ 2 ] [ 1 ] * SH_MAG [ 1 ] + P [ 3 ] [ 1 ] * SH_MAG [ 2 ] - P [ 16 ] [ 1 ] * ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) + P [ 17 ] [ 1 ] * ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) - P [ 18 ] [ 1 ] * ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) + P [ 0 ] [ 1 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - SH_MAG [ 1 ] * ( P [ 19 ] [ 2 ] + P [ 1 ] [ 2 ] * SH_MAG [ 0 ] - P [ 2 ] [ 2 ] * SH_MAG [ 1 ] + P [ 3 ] [ 2 ] * SH_MAG [ 2 ] - P [ 16 ] [ 2 ] * ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) + P [ 17 ] [ 2 ] * ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) - P [ 18 ] [ 2 ] * ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) + P [ 0 ] [ 2 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + SH_MAG [ 2 ] * ( P [ 19 ] [ 3 ] + P [ 1 ] [ 3 ] * SH_MAG [ 0 ] - P [ 2 ] [ 3 ] * SH_MAG [ 1 ] + P [ 3 ] [ 3 ] * SH_MAG [ 2 ] - P [ 16 ] [ 3 ] * ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) + P [ 17 ] [ 3 ] * ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) - P [ 18 ] [ 3 ] * ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) + P [ 0 ] [ 3 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) * ( P [ 19 ] [ 16 ] + P [ 1 ] [ 16 ] * SH_MAG [ 0 ] - P [ 2 ] [ 16 ] * SH_MAG [ 1 ] + P [ 3 ] [ 16 ] * SH_MAG [ 2 ] - P [ 16 ] [ 16 ] * ( SH_MAG [ 3 ] + SH_MAG [ 4 ] - SH_MAG [ 5 ] - SH_MAG [ 6 ] ) + P [ 17 ] [ 16 ] * ( 2.0f * q0 * q3 + 2.0f * q1 * q2 ) - P [ 18 ] [ 16 ] * ( 2.0f * q0 * q2 - 2.0f * q1 * q3 ) + P [ 0 ] [ 16 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + P [ 0 ] [ 19 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) ;
// check for a badly conditioned covariance matrix
if ( _mag_innov_var [ 0 ] > = R_MAG ) {
// the innovation variance contribution from the state covariances is non-negative - no fault
_fault_status . flags . bad_mag_x = false ;
@ -119,8 +102,80 @@ void Ekf::fuseMag()
@@ -119,8 +102,80 @@ void Ekf::fuseMag()
resetMagCovariance ( ) ;
ECL_ERR ( " EKF magX fusion numerical error - covariance reset " ) ;
return ;
}
// Y axis innovation variance
_mag_innov_var [ 1 ] = ( P [ 20 ] [ 20 ] + R_MAG + P [ 0 ] [ 20 ] * SH_MAG [ 2 ] + P [ 1 ] [ 20 ] * SH_MAG [ 1 ] + P [ 2 ] [ 20 ] * SH_MAG [ 0 ] - P [ 17 ] [ 20 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) * ( P [ 20 ] [ 16 ] + P [ 0 ] [ 16 ] * SH_MAG [ 2 ] + P [ 1 ] [ 16 ] * SH_MAG [ 1 ] + P [ 2 ] [ 16 ] * SH_MAG [ 0 ] - P [ 17 ] [ 16 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 16 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 16 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 16 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) * ( P [ 20 ] [ 18 ] + P [ 0 ] [ 18 ] * SH_MAG [ 2 ] + P [ 1 ] [ 18 ] * SH_MAG [ 1 ] + P [ 2 ] [ 18 ] * SH_MAG [ 0 ] - P [ 17 ] [ 18 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 18 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 18 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 18 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) * ( P [ 20 ] [ 3 ] + P [ 0 ] [ 3 ] * SH_MAG [ 2 ] + P [ 1 ] [ 3 ] * SH_MAG [ 1 ] + P [ 2 ] [ 3 ] * SH_MAG [ 0 ] - P [ 17 ] [ 3 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 3 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 3 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 3 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - P [ 16 ] [ 20 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 20 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) + SH_MAG [ 2 ] * ( P [ 20 ] [ 0 ] + P [ 0 ] [ 0 ] * SH_MAG [ 2 ] + P [ 1 ] [ 0 ] * SH_MAG [ 1 ] + P [ 2 ] [ 0 ] * SH_MAG [ 0 ] - P [ 17 ] [ 0 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 0 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 0 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 0 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + SH_MAG [ 1 ] * ( P [ 20 ] [ 1 ] + P [ 0 ] [ 1 ] * SH_MAG [ 2 ] + P [ 1 ] [ 1 ] * SH_MAG [ 1 ] + P [ 2 ] [ 1 ] * SH_MAG [ 0 ] - P [ 17 ] [ 1 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 1 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 1 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 1 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + SH_MAG [ 0 ] * ( P [ 20 ] [ 2 ] + P [ 0 ] [ 2 ] * SH_MAG [ 2 ] + P [ 1 ] [ 2 ] * SH_MAG [ 1 ] + P [ 2 ] [ 2 ] * SH_MAG [ 0 ] - P [ 17 ] [ 2 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 2 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 2 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 2 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) * ( P [ 20 ] [ 17 ] + P [ 0 ] [ 17 ] * SH_MAG [ 2 ] + P [ 1 ] [ 17 ] * SH_MAG [ 1 ] + P [ 2 ] [ 17 ] * SH_MAG [ 0 ] - P [ 17 ] [ 17 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 17 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 17 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 17 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - P [ 3 ] [ 20 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) ;
// check for a badly conditioned covariance matrix
if ( _mag_innov_var [ 1 ] > = R_MAG ) {
// the innovation variance contribution from the state covariances is non-negative - no fault
_fault_status . flags . bad_mag_y = false ;
} else {
// the innovation variance contribution from the state covariances is negtive which means the covariance matrix is badly conditioned
_fault_status . flags . bad_mag_y = true ;
// we need to re-initialise covariances and abort this fusion step
resetMagCovariance ( ) ;
ECL_ERR ( " EKF magY fusion numerical error - covariance reset " ) ;
return ;
}
// Z axis innovation variance
_mag_innov_var [ 2 ] = ( P [ 21 ] [ 21 ] + R_MAG + P [ 0 ] [ 21 ] * SH_MAG [ 1 ] - P [ 1 ] [ 21 ] * SH_MAG [ 2 ] + P [ 3 ] [ 21 ] * SH_MAG [ 0 ] + P [ 18 ] [ 21 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) * ( P [ 21 ] [ 16 ] + P [ 0 ] [ 16 ] * SH_MAG [ 1 ] - P [ 1 ] [ 16 ] * SH_MAG [ 2 ] + P [ 3 ] [ 16 ] * SH_MAG [ 0 ] + P [ 18 ] [ 16 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 16 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 16 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 16 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) * ( P [ 21 ] [ 17 ] + P [ 0 ] [ 17 ] * SH_MAG [ 1 ] - P [ 1 ] [ 17 ] * SH_MAG [ 2 ] + P [ 3 ] [ 17 ] * SH_MAG [ 0 ] + P [ 18 ] [ 17 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 17 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 17 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 17 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) * ( P [ 21 ] [ 2 ] + P [ 0 ] [ 2 ] * SH_MAG [ 1 ] - P [ 1 ] [ 2 ] * SH_MAG [ 2 ] + P [ 3 ] [ 2 ] * SH_MAG [ 0 ] + P [ 18 ] [ 2 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 2 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 2 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 2 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + P [ 16 ] [ 21 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 21 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + SH_MAG [ 1 ] * ( P [ 21 ] [ 0 ] + P [ 0 ] [ 0 ] * SH_MAG [ 1 ] - P [ 1 ] [ 0 ] * SH_MAG [ 2 ] + P [ 3 ] [ 0 ] * SH_MAG [ 0 ] + P [ 18 ] [ 0 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 0 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 0 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 0 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - SH_MAG [ 2 ] * ( P [ 21 ] [ 1 ] + P [ 0 ] [ 1 ] * SH_MAG [ 1 ] - P [ 1 ] [ 1 ] * SH_MAG [ 2 ] + P [ 3 ] [ 1 ] * SH_MAG [ 0 ] + P [ 18 ] [ 1 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 1 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 1 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 1 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + SH_MAG [ 0 ] * ( P [ 21 ] [ 3 ] + P [ 0 ] [ 3 ] * SH_MAG [ 1 ] - P [ 1 ] [ 3 ] * SH_MAG [ 2 ] + P [ 3 ] [ 3 ] * SH_MAG [ 0 ] + P [ 18 ] [ 3 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 3 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 3 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 3 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) * ( P [ 21 ] [ 18 ] + P [ 0 ] [ 18 ] * SH_MAG [ 1 ] - P [ 1 ] [ 18 ] * SH_MAG [ 2 ] + P [ 3 ] [ 18 ] * SH_MAG [ 0 ] + P [ 18 ] [ 18 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 18 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 18 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 18 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + P [ 2 ] [ 21 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) ;
// check for a badly conditioned covariance matrix
if ( _mag_innov_var [ 2 ] > = R_MAG ) {
// the innovation variance contribution from the state covariances is non-negative - no fault
_fault_status . flags . bad_mag_z = false ;
} else if ( _mag_innov_var [ 2 ] > 0.0f ) {
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status . flags . bad_mag_z = true ;
// we need to re-initialise covariances and abort this fusion step
resetMagCovariance ( ) ;
ECL_ERR ( " EKF magZ fusion numerical error - covariance reset " ) ;
return ;
}
// Perform an innovation consistency check and report the result
bool healthy = true ;
for ( uint8_t index = 0 ; index < = 2 ; index + + ) {
_mag_test_ratio [ index ] = sq ( _mag_innov [ index ] ) / ( sq ( math : : max ( _params . mag_innov_gate , 1.0f ) ) * _mag_innov_var [ index ] ) ;
if ( _mag_test_ratio [ index ] > 1.0f ) {
healthy = false ;
_innov_check_fail_status . value | = ( 1 < < ( index + 3 ) ) ;
} else {
_innov_check_fail_status . value & = ! ( 1 < < ( index + 3 ) ) ;
}
}
// if any axis fails, abort the mag fusion
if ( ! healthy ) {
return ;
}
// update the states and covariance using sequential fusion of the magnetometer components
for ( uint8_t index = 0 ; index < = 2 ; index + + ) {
// Calculate Kalman gains and observation jacobians
if ( index = = 0 ) {
// Calculate X axis observation jacobians
memset ( H_MAG , 0 , sizeof ( H_MAG ) ) ;
H_MAG [ 0 ] = SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ;
H_MAG [ 1 ] = SH_MAG [ 0 ] ;
H_MAG [ 2 ] = - SH_MAG [ 1 ] ;
H_MAG [ 3 ] = SH_MAG [ 2 ] ;
H_MAG [ 16 ] = SH_MAG [ 5 ] - SH_MAG [ 4 ] - SH_MAG [ 3 ] + SH_MAG [ 6 ] ;
H_MAG [ 17 ] = 2.0f * q0 * q3 + 2.0f * q1 * q2 ;
H_MAG [ 18 ] = 2.0f * q1 * q3 - 2.0f * q0 * q2 ;
H_MAG [ 19 ] = 1.0f ;
// Calculate X axis Kalman gains
float SK_MX [ 5 ] ;
SK_MX [ 0 ] = 1.0f / _mag_innov_var [ 0 ] ;
@ -166,23 +221,6 @@ void Ekf::fuseMag()
@@ -166,23 +221,6 @@ void Ekf::fuseMag()
H_MAG [ 18 ] = 2.0f * q0 * q1 + 2.0f * q2 * q3 ;
H_MAG [ 20 ] = 1.0f ;
// intermediate variables - note SK_MY[0] is 1/(innovation variance)
_mag_innov_var [ 1 ] = ( P [ 20 ] [ 20 ] + R_MAG + P [ 0 ] [ 20 ] * SH_MAG [ 2 ] + P [ 1 ] [ 20 ] * SH_MAG [ 1 ] + P [ 2 ] [ 20 ] * SH_MAG [ 0 ] - P [ 17 ] [ 20 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) * ( P [ 20 ] [ 16 ] + P [ 0 ] [ 16 ] * SH_MAG [ 2 ] + P [ 1 ] [ 16 ] * SH_MAG [ 1 ] + P [ 2 ] [ 16 ] * SH_MAG [ 0 ] - P [ 17 ] [ 16 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 16 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 16 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 16 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) * ( P [ 20 ] [ 18 ] + P [ 0 ] [ 18 ] * SH_MAG [ 2 ] + P [ 1 ] [ 18 ] * SH_MAG [ 1 ] + P [ 2 ] [ 18 ] * SH_MAG [ 0 ] - P [ 17 ] [ 18 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 18 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 18 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 18 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) * ( P [ 20 ] [ 3 ] + P [ 0 ] [ 3 ] * SH_MAG [ 2 ] + P [ 1 ] [ 3 ] * SH_MAG [ 1 ] + P [ 2 ] [ 3 ] * SH_MAG [ 0 ] - P [ 17 ] [ 3 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 3 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 3 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 3 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - P [ 16 ] [ 20 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 20 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) + SH_MAG [ 2 ] * ( P [ 20 ] [ 0 ] + P [ 0 ] [ 0 ] * SH_MAG [ 2 ] + P [ 1 ] [ 0 ] * SH_MAG [ 1 ] + P [ 2 ] [ 0 ] * SH_MAG [ 0 ] - P [ 17 ] [ 0 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 0 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 0 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 0 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + SH_MAG [ 1 ] * ( P [ 20 ] [ 1 ] + P [ 0 ] [ 1 ] * SH_MAG [ 2 ] + P [ 1 ] [ 1 ] * SH_MAG [ 1 ] + P [ 2 ] [ 1 ] * SH_MAG [ 0 ] - P [ 17 ] [ 1 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 1 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 1 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 1 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + SH_MAG [ 0 ] * ( P [ 20 ] [ 2 ] + P [ 0 ] [ 2 ] * SH_MAG [ 2 ] + P [ 1 ] [ 2 ] * SH_MAG [ 1 ] + P [ 2 ] [ 2 ] * SH_MAG [ 0 ] - P [ 17 ] [ 2 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 2 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 2 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 2 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) * ( P [ 20 ] [ 17 ] + P [ 0 ] [ 17 ] * SH_MAG [ 2 ] + P [ 1 ] [ 17 ] * SH_MAG [ 1 ] + P [ 2 ] [ 17 ] * SH_MAG [ 0 ] - P [ 17 ] [ 17 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] + SH_MAG [ 5 ] - SH_MAG [ 6 ] ) - P [ 16 ] [ 17 ] * ( 2.0f * q0 * q3 - 2.0f * q1 * q2 ) + P [ 18 ] [ 17 ] * ( 2.0f * q0 * q1 + 2.0f * q2 * q3 ) - P [ 3 ] [ 17 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - P [ 3 ] [ 20 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) ;
// check for a badly conditioned covariance matrix
if ( _mag_innov_var [ 1 ] > = R_MAG ) {
// the innovation variance contribution from the state covariances is non-negative - no fault
_fault_status . flags . bad_mag_y = false ;
} else {
// the innovation variance contribution from the state covariances is negtive which means the covariance matrix is badly conditioned
_fault_status . flags . bad_mag_y = true ;
// we need to re-initialise covariances and abort this fusion step
resetMagCovariance ( ) ;
ECL_ERR ( " EKF magY fusion numerical error - covariance reset " ) ;
return ;
}
// Calculate Y axis Kalman gains
float SK_MY [ 5 ] ;
SK_MY [ 0 ] = 1.0f / _mag_innov_var [ 1 ] ;
@ -228,24 +266,6 @@ void Ekf::fuseMag()
@@ -228,24 +266,6 @@ void Ekf::fuseMag()
H_MAG [ 18 ] = SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ;
H_MAG [ 21 ] = 1.0f ;
// intermediate variables
_mag_innov_var [ 2 ] = ( P [ 21 ] [ 21 ] + R_MAG + P [ 0 ] [ 21 ] * SH_MAG [ 1 ] - P [ 1 ] [ 21 ] * SH_MAG [ 2 ] + P [ 3 ] [ 21 ] * SH_MAG [ 0 ] + P [ 18 ] [ 21 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) * ( P [ 21 ] [ 16 ] + P [ 0 ] [ 16 ] * SH_MAG [ 1 ] - P [ 1 ] [ 16 ] * SH_MAG [ 2 ] + P [ 3 ] [ 16 ] * SH_MAG [ 0 ] + P [ 18 ] [ 16 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 16 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 16 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 16 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) * ( P [ 21 ] [ 17 ] + P [ 0 ] [ 17 ] * SH_MAG [ 1 ] - P [ 1 ] [ 17 ] * SH_MAG [ 2 ] + P [ 3 ] [ 17 ] * SH_MAG [ 0 ] + P [ 18 ] [ 17 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 17 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 17 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 17 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) * ( P [ 21 ] [ 2 ] + P [ 0 ] [ 2 ] * SH_MAG [ 1 ] - P [ 1 ] [ 2 ] * SH_MAG [ 2 ] + P [ 3 ] [ 2 ] * SH_MAG [ 0 ] + P [ 18 ] [ 2 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 2 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 2 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 2 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + P [ 16 ] [ 21 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 21 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + SH_MAG [ 1 ] * ( P [ 21 ] [ 0 ] + P [ 0 ] [ 0 ] * SH_MAG [ 1 ] - P [ 1 ] [ 0 ] * SH_MAG [ 2 ] + P [ 3 ] [ 0 ] * SH_MAG [ 0 ] + P [ 18 ] [ 0 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 0 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 0 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 0 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) - SH_MAG [ 2 ] * ( P [ 21 ] [ 1 ] + P [ 0 ] [ 1 ] * SH_MAG [ 1 ] - P [ 1 ] [ 1 ] * SH_MAG [ 2 ] + P [ 3 ] [ 1 ] * SH_MAG [ 0 ] + P [ 18 ] [ 1 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 1 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 1 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 1 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + SH_MAG [ 0 ] * ( P [ 21 ] [ 3 ] + P [ 0 ] [ 3 ] * SH_MAG [ 1 ] - P [ 1 ] [ 3 ] * SH_MAG [ 2 ] + P [ 3 ] [ 3 ] * SH_MAG [ 0 ] + P [ 18 ] [ 3 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 3 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 3 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 3 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) * ( P [ 21 ] [ 18 ] + P [ 0 ] [ 18 ] * SH_MAG [ 1 ] - P [ 1 ] [ 18 ] * SH_MAG [ 2 ] + P [ 3 ] [ 18 ] * SH_MAG [ 0 ] + P [ 18 ] [ 18 ] * ( SH_MAG [ 3 ] - SH_MAG [ 4 ] - SH_MAG [ 5 ] + SH_MAG [ 6 ] ) + P [ 16 ] [ 18 ] * ( 2.0f * q0 * q2 + 2.0f * q1 * q3 ) - P [ 17 ] [ 18 ] * ( 2.0f * q0 * q1 - 2.0f * q2 * q3 ) + P [ 2 ] [ 18 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) + P [ 2 ] [ 21 ] * ( SH_MAG [ 7 ] + SH_MAG [ 8 ] - 2.0f * magD * q2 ) ) ;
// check for a badly conditioned covariance matrix
if ( _mag_innov_var [ 2 ] > = R_MAG ) {
// the innovation variance contribution from the state covariances is non-negative - no fault
_fault_status . flags . bad_mag_z = false ;
} else if ( _mag_innov_var [ 2 ] > 0.0f ) {
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status . flags . bad_mag_z = true ;
// we need to re-initialise covariances and abort this fusion step
resetMagCovariance ( ) ;
ECL_ERR ( " EKF magZ fusion numerical error - covariance reset " ) ;
return ;
}
// Calculate Z axis Kalman gains
float SK_MZ [ 5 ] ;
SK_MZ [ 0 ] = 1.0f / _mag_innov_var [ 2 ] ;
@ -283,16 +303,6 @@ void Ekf::fuseMag()
@@ -283,16 +303,6 @@ void Ekf::fuseMag()
return ;
}
// Perform an innovation consistency check and report the result
bool healthy = true ;
_mag_test_ratio [ index ] = sq ( _mag_innov [ index ] ) / ( sq ( math : : max ( _params . mag_innov_gate , 1.0f ) ) * _mag_innov_var [ index ] ) ;
if ( _mag_test_ratio [ index ] > 1.0f ) {
healthy = false ;
_innov_check_fail_status . value | = ( 1 < < ( index + 3 ) ) ;
} else {
_innov_check_fail_status . value & = ! ( 1 < < ( index + 3 ) ) ;
}
// apply covariance correction via P_new = (I -K*H)*P
// first calculate expression for KHP
// then calculate P - KHP