Browse Source

EKF: Updates to 3-axis mag fusion auto-code

The code fragments for the magnetometer fusion have been refreshed from the auto-coder.
Explicit floating point types used for constants.
The 3x24 observation Jacobian has been replaced with a 1x24 that is updated each axis iteration to save memory.
master
Paul Riseborough 9 years ago
parent
commit
b3baab64f2
  1. 123
      EKF/mag_fusion.cpp

123
EKF/mag_fusion.cpp

@ -61,15 +61,15 @@ void Ekf::fuseMag() @@ -61,15 +61,15 @@ void Ekf::fuseMag()
// intermediate variables from algebraic optimisation
float SH_MAG[9];
SH_MAG[0] = 2*magD*q3 + 2*magE*q2 + 2*magN*q1;
SH_MAG[1] = 2*magD*q0 - 2*magE*q1 + 2*magN*q2;
SH_MAG[2] = 2*magD*q1 + 2*magE*q0 - 2*magN*q3;
SH_MAG[0] = 2.0f*magD*q3 + 2.0f*magE*q2 + 2.0f*magN*q1;
SH_MAG[1] = 2.0f*magD*q0 - 2.0f*magE*q1 + 2.0f*magN*q2;
SH_MAG[2] = 2.0f*magD*q1 + 2.0f*magE*q0 - 2.0f*magN*q3;
SH_MAG[3] = sq(q3);
SH_MAG[4] = sq(q2);
SH_MAG[5] = sq(q1);
SH_MAG[6] = sq(q0);
SH_MAG[7] = 2*magN*q0;
SH_MAG[8] = 2*magE*q3;
SH_MAG[7] = 2.0f*magN*q0;
SH_MAG[8] = 2.0f*magE*q3;
// rotate magnetometer earth field state into body frame
matrix::Dcm<float> R_to_body(_state.quat_nominal);
@ -82,52 +82,29 @@ void Ekf::fuseMag() @@ -82,52 +82,29 @@ void Ekf::fuseMag()
_mag_innov[1] = (mag_I_rot(1) + _state.mag_B(1)) - _mag_sample_delayed.mag(1);
_mag_innov[2] = (mag_I_rot(2) + _state.mag_B(2)) - _mag_sample_delayed.mag(2);
// Note that although the observation jacobians and kalman gains are decalred as arrays
// sequential fusion of the X,Y and Z components is used.
float H_MAG[3][24] = {};
float Kfusion[24] = {};
// Calculate observation Jacobians and kalman gains for each magnetometer axis
// X Axis
H_MAG[0][0] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
H_MAG[0][1] = SH_MAG[0];
H_MAG[0][2] = -SH_MAG[1];
H_MAG[0][3] = SH_MAG[2];
H_MAG[0][16] = SH_MAG[5] - SH_MAG[4] - SH_MAG[3] + SH_MAG[6];
H_MAG[0][17] = 2*q0*q3 + 2*q1*q2;
H_MAG[0][18] = 2*q1*q3 - 2*q0*q2;
H_MAG[0][19] = 1.0f;
// Y axis
H_MAG[1][0] = SH_MAG[2];
H_MAG[1][1] = SH_MAG[1];
H_MAG[1][2] = SH_MAG[0];
H_MAG[1][3] = 2*magD*q2 - SH_MAG[8] - SH_MAG[7];
H_MAG[1][16] = 2*q1*q2 - 2*q0*q3;
H_MAG[1][17] = SH_MAG[4] - SH_MAG[3] - SH_MAG[5] + SH_MAG[6];
H_MAG[1][18] = 2*q0*q1 + 2*q2*q3;
H_MAG[1][20] = 1.0f;
// Z axis
H_MAG[2][0] = SH_MAG[1];
H_MAG[2][1] = -SH_MAG[2];
H_MAG[2][2] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
H_MAG[2][3] = SH_MAG[0];
H_MAG[2][16] = 2*q0*q2 + 2*q1*q3;
H_MAG[2][17] = 2*q2*q3 - 2*q0*q1;
H_MAG[2][18] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
H_MAG[2][21] = 1.0f;
// Observation jacobian and Kalman gain vectors
float H_MAG[24];
float Kfusion[24];
// update the states and covariance using sequential fusion of the magnetometer components
for (uint8_t index = 0; index <= 2; index++) {
// Calculate Kalman gains
// Calculate Kalman gains and observation jacobians
if (index == 0) {
// Calculate X axis observation jacobians
memset(H_MAG, 0, sizeof(H_MAG));
H_MAG[0] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
H_MAG[1] = SH_MAG[0];
H_MAG[2] = -SH_MAG[1];
H_MAG[3] = SH_MAG[2];
H_MAG[16] = SH_MAG[5] - SH_MAG[4] - SH_MAG[3] + SH_MAG[6];
H_MAG[17] = 2.0f*q0*q3 + 2.0f*q1*q2;
H_MAG[18] = 2.0f*q1*q3 - 2.0f*q0*q2;
H_MAG[19] = 1.0f;
// intermediate variables
float SK_MX[5] = {};
// innovation variance
_mag_innov_var[0] = (P[19][19] + R_MAG + P[1][19]*SH_MAG[0] - P[2][19]*SH_MAG[1] + P[3][19]*SH_MAG[2] - P[16][19]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + (2*q0*q3 + 2*q1*q2)*(P[19][17] + P[1][17]*SH_MAG[0] - P[2][17]*SH_MAG[1] + P[3][17]*SH_MAG[2] - P[16][17]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][17]*(2*q0*q3 + 2*q1*q2) - P[18][17]*(2*q0*q2 - 2*q1*q3) + P[0][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (2*q0*q2 - 2*q1*q3)*(P[19][18] + P[1][18]*SH_MAG[0] - P[2][18]*SH_MAG[1] + P[3][18]*SH_MAG[2] - P[16][18]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][18]*(2*q0*q3 + 2*q1*q2) - P[18][18]*(2*q0*q2 - 2*q1*q3) + P[0][18]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[19][0] + P[1][0]*SH_MAG[0] - P[2][0]*SH_MAG[1] + P[3][0]*SH_MAG[2] - P[16][0]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][0]*(2*q0*q3 + 2*q1*q2) - P[18][0]*(2*q0*q2 - 2*q1*q3) + P[0][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[17][19]*(2*q0*q3 + 2*q1*q2) - P[18][19]*(2*q0*q2 - 2*q1*q3) + SH_MAG[0]*(P[19][1] + P[1][1]*SH_MAG[0] - P[2][1]*SH_MAG[1] + P[3][1]*SH_MAG[2] - P[16][1]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][1]*(2*q0*q3 + 2*q1*q2) - P[18][1]*(2*q0*q2 - 2*q1*q3) + P[0][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - SH_MAG[1]*(P[19][2] + P[1][2]*SH_MAG[0] - P[2][2]*SH_MAG[1] + P[3][2]*SH_MAG[2] - P[16][2]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][2]*(2*q0*q3 + 2*q1*q2) - P[18][2]*(2*q0*q2 - 2*q1*q3) + P[0][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[2]*(P[19][3] + P[1][3]*SH_MAG[0] - P[2][3]*SH_MAG[1] + P[3][3]*SH_MAG[2] - P[16][3]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][3]*(2*q0*q3 + 2*q1*q2) - P[18][3]*(2*q0*q2 - 2*q1*q3) + P[0][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6])*(P[19][16] + P[1][16]*SH_MAG[0] - P[2][16]*SH_MAG[1] + P[3][16]*SH_MAG[2] - P[16][16]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][16]*(2*q0*q3 + 2*q1*q2) - P[18][16]*(2*q0*q2 - 2*q1*q3) + P[0][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[0][19]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
_mag_innov_var[0] = (P[19][19] + R_MAG + P[1][19]*SH_MAG[0] - P[2][19]*SH_MAG[1] + P[3][19]*SH_MAG[2] - P[16][19]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + (2.0f*q0*q3 + 2.0f*q1*q2)*(P[19][17] + P[1][17]*SH_MAG[0] - P[2][17]*SH_MAG[1] + P[3][17]*SH_MAG[2] - P[16][17]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][17]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][17]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (2.0f*q0*q2 - 2.0f*q1*q3)*(P[19][18] + P[1][18]*SH_MAG[0] - P[2][18]*SH_MAG[1] + P[3][18]*SH_MAG[2] - P[16][18]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][18]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][18]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[19][0] + P[1][0]*SH_MAG[0] - P[2][0]*SH_MAG[1] + P[3][0]*SH_MAG[2] - P[16][0]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][0]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][0]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[17][19]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][19]*(2.0f*q0*q2 - 2.0f*q1*q3) + SH_MAG[0]*(P[19][1] + P[1][1]*SH_MAG[0] - P[2][1]*SH_MAG[1] + P[3][1]*SH_MAG[2] - P[16][1]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][1]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][1]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - SH_MAG[1]*(P[19][2] + P[1][2]*SH_MAG[0] - P[2][2]*SH_MAG[1] + P[3][2]*SH_MAG[2] - P[16][2]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][2]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][2]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[2]*(P[19][3] + P[1][3]*SH_MAG[0] - P[2][3]*SH_MAG[1] + P[3][3]*SH_MAG[2] - P[16][3]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][3]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][3]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6])*(P[19][16] + P[1][16]*SH_MAG[0] - P[2][16]*SH_MAG[1] + P[3][16]*SH_MAG[2] - P[16][16]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][16]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][16]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[0][19]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
// check for a badly conditioned covariance matrix
if (_mag_innov_var[0] >= R_MAG) {
@ -145,11 +122,12 @@ void Ekf::fuseMag() @@ -145,11 +122,12 @@ void Ekf::fuseMag()
}
// Calculate X axis Kalman gains
float SK_MX[5];
SK_MX[0] = 1.0f / _mag_innov_var[0];
SK_MX[1] = SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6];
SK_MX[2] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
SK_MX[3] = 2*q0*q2 - 2*q1*q3;
SK_MX[4] = 2*q0*q3 + 2*q1*q2;
SK_MX[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MX[3] = 2.0f*q0*q2 - 2.0f*q1*q3;
SK_MX[4] = 2.0f*q0*q3 + 2.0f*q1*q2;
Kfusion[0] = SK_MX[0]*(P[0][19] + P[0][1]*SH_MAG[0] - P[0][2]*SH_MAG[1] + P[0][3]*SH_MAG[2] + P[0][0]*SK_MX[2] - P[0][16]*SK_MX[1] + P[0][17]*SK_MX[4] - P[0][18]*SK_MX[3]);
Kfusion[1] = SK_MX[0]*(P[1][19] + P[1][1]*SH_MAG[0] - P[1][2]*SH_MAG[1] + P[1][3]*SH_MAG[2] + P[1][0]*SK_MX[2] - P[1][16]*SK_MX[1] + P[1][17]*SK_MX[4] - P[1][18]*SK_MX[3]);
@ -177,10 +155,19 @@ void Ekf::fuseMag() @@ -177,10 +155,19 @@ void Ekf::fuseMag()
Kfusion[23] = SK_MX[0]*(P[23][19] + P[23][1]*SH_MAG[0] - P[23][2]*SH_MAG[1] + P[23][3]*SH_MAG[2] + P[23][0]*SK_MX[2] - P[23][16]*SK_MX[1] + P[23][17]*SK_MX[4] - P[23][18]*SK_MX[3]);
} else if (index == 1) {
// intermediate variables - note SK_MY[0] is 1/(innovation variance)
float SK_MY[5];
_mag_innov_var[1] = (P[20][20] + R_MAG + P[0][20]*SH_MAG[2] + P[1][20]*SH_MAG[1] + P[2][20]*SH_MAG[0] - P[17][20]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - (2*q0*q3 - 2*q1*q2)*(P[20][16] + P[0][16]*SH_MAG[2] + P[1][16]*SH_MAG[1] + P[2][16]*SH_MAG[0] - P[17][16]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][16]*(2*q0*q3 - 2*q1*q2) + P[18][16]*(2*q0*q1 + 2*q2*q3) - P[3][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (2*q0*q1 + 2*q2*q3)*(P[20][18] + P[0][18]*SH_MAG[2] + P[1][18]*SH_MAG[1] + P[2][18]*SH_MAG[0] - P[17][18]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][18]*(2*q0*q3 - 2*q1*q2) + P[18][18]*(2*q0*q1 + 2*q2*q3) - P[3][18]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[20][3] + P[0][3]*SH_MAG[2] + P[1][3]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[17][3]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][3]*(2*q0*q3 - 2*q1*q2) + P[18][3]*(2*q0*q1 + 2*q2*q3) - P[3][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - P[16][20]*(2*q0*q3 - 2*q1*q2) + P[18][20]*(2*q0*q1 + 2*q2*q3) + SH_MAG[2]*(P[20][0] + P[0][0]*SH_MAG[2] + P[1][0]*SH_MAG[1] + P[2][0]*SH_MAG[0] - P[17][0]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][0]*(2*q0*q3 - 2*q1*q2) + P[18][0]*(2*q0*q1 + 2*q2*q3) - P[3][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[1]*(P[20][1] + P[0][1]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[2][1]*SH_MAG[0] - P[17][1]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][1]*(2*q0*q3 - 2*q1*q2) + P[18][1]*(2*q0*q1 + 2*q2*q3) - P[3][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[20][2] + P[0][2]*SH_MAG[2] + P[1][2]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[17][2]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][2]*(2*q0*q3 - 2*q1*q2) + P[18][2]*(2*q0*q1 + 2*q2*q3) - P[3][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6])*(P[20][17] + P[0][17]*SH_MAG[2] + P[1][17]*SH_MAG[1] + P[2][17]*SH_MAG[0] - P[17][17]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][17]*(2*q0*q3 - 2*q1*q2) + P[18][17]*(2*q0*q1 + 2*q2*q3) - P[3][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - P[3][20]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
// Calculate Y axis observation jacobians
memset(H_MAG, 0, sizeof(H_MAG));
H_MAG[0] = SH_MAG[2];
H_MAG[1] = SH_MAG[1];
H_MAG[2] = SH_MAG[0];
H_MAG[3] = 2.0f*magD*q2 - SH_MAG[8] - SH_MAG[7];
H_MAG[16] = 2.0f*q1*q2 - 2.0f*q0*q3;
H_MAG[17] = SH_MAG[4] - SH_MAG[3] - SH_MAG[5] + SH_MAG[6];
H_MAG[18] = 2.0f*q0*q1 + 2.0f*q2*q3;
H_MAG[20] = 1.0f;
// intermediate variables - note SK_MY[0] is 1/(innovation variance)
_mag_innov_var[1] = (P[20][20] + R_MAG + P[0][20]*SH_MAG[2] + P[1][20]*SH_MAG[1] + P[2][20]*SH_MAG[0] - P[17][20]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - (2.0f*q0*q3 - 2.0f*q1*q2)*(P[20][16] + P[0][16]*SH_MAG[2] + P[1][16]*SH_MAG[1] + P[2][16]*SH_MAG[0] - P[17][16]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][16]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][16]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (2.0f*q0*q1 + 2.0f*q2*q3)*(P[20][18] + P[0][18]*SH_MAG[2] + P[1][18]*SH_MAG[1] + P[2][18]*SH_MAG[0] - P[17][18]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][18]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][18]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[20][3] + P[0][3]*SH_MAG[2] + P[1][3]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[17][3]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][3]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][3]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - P[16][20]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][20]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_MAG[2]*(P[20][0] + P[0][0]*SH_MAG[2] + P[1][0]*SH_MAG[1] + P[2][0]*SH_MAG[0] - P[17][0]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][0]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][0]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[1]*(P[20][1] + P[0][1]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[2][1]*SH_MAG[0] - P[17][1]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][1]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][1]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[0]*(P[20][2] + P[0][2]*SH_MAG[2] + P[1][2]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[17][2]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][2]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][2]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6])*(P[20][17] + P[0][17]*SH_MAG[2] + P[1][17]*SH_MAG[1] + P[2][17]*SH_MAG[0] - P[17][17]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][17]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][17]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - P[3][20]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
// check for a badly conditioned covariance matrix
if (_mag_innov_var[1] >= R_MAG) {
// the innovation variance contribution from the state covariances is non-negative - no fault
@ -197,11 +184,12 @@ void Ekf::fuseMag() @@ -197,11 +184,12 @@ void Ekf::fuseMag()
}
// Calculate Y axis Kalman gains
float SK_MY[5];
SK_MY[0] = 1.0f / _mag_innov_var[1];
SK_MY[1] = SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6];
SK_MY[2] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
SK_MY[3] = 2*q0*q3 - 2*q1*q2;
SK_MY[4] = 2*q0*q1 + 2*q2*q3;
SK_MY[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MY[3] = 2.0f*q0*q3 - 2.0f*q1*q2;
SK_MY[4] = 2.0f*q0*q1 + 2.0f*q2*q3;
Kfusion[0] = SK_MY[0]*(P[0][20] + P[0][0]*SH_MAG[2] + P[0][1]*SH_MAG[1] + P[0][2]*SH_MAG[0] - P[0][3]*SK_MY[2] - P[0][17]*SK_MY[1] - P[0][16]*SK_MY[3] + P[0][18]*SK_MY[4]);
Kfusion[1] = SK_MY[0]*(P[1][20] + P[1][0]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[1][2]*SH_MAG[0] - P[1][3]*SK_MY[2] - P[1][17]*SK_MY[1] - P[1][16]*SK_MY[3] + P[1][18]*SK_MY[4]);
@ -229,9 +217,19 @@ void Ekf::fuseMag() @@ -229,9 +217,19 @@ void Ekf::fuseMag()
Kfusion[23] = SK_MY[0]*(P[23][20] + P[23][0]*SH_MAG[2] + P[23][1]*SH_MAG[1] + P[23][2]*SH_MAG[0] - P[23][3]*SK_MY[2] - P[23][17]*SK_MY[1] - P[23][16]*SK_MY[3] + P[23][18]*SK_MY[4]);
} else if (index == 2) {
// calculate Z axis observation jacobians
memset(H_MAG, 0, sizeof(H_MAG));
H_MAG[0] = SH_MAG[1];
H_MAG[1] = -SH_MAG[2];
H_MAG[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
H_MAG[3] = SH_MAG[0];
H_MAG[16] = 2.0f*q0*q2 + 2.0f*q1*q3;
H_MAG[17] = 2.0f*q2*q3 - 2.0f*q0*q1;
H_MAG[18] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
H_MAG[21] = 1.0f;
// intermediate variables
float SK_MZ[5];
_mag_innov_var[2] = (P[21][21] + R_MAG + P[0][21]*SH_MAG[1] - P[1][21]*SH_MAG[2] + P[3][21]*SH_MAG[0] + P[18][21]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + (2*q0*q2 + 2*q1*q3)*(P[21][16] + P[0][16]*SH_MAG[1] - P[1][16]*SH_MAG[2] + P[3][16]*SH_MAG[0] + P[18][16]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][16]*(2*q0*q2 + 2*q1*q3) - P[17][16]*(2*q0*q1 - 2*q2*q3) + P[2][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (2*q0*q1 - 2*q2*q3)*(P[21][17] + P[0][17]*SH_MAG[1] - P[1][17]*SH_MAG[2] + P[3][17]*SH_MAG[0] + P[18][17]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][17]*(2*q0*q2 + 2*q1*q3) - P[17][17]*(2*q0*q1 - 2*q2*q3) + P[2][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[21][2] + P[0][2]*SH_MAG[1] - P[1][2]*SH_MAG[2] + P[3][2]*SH_MAG[0] + P[18][2]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][2]*(2*q0*q2 + 2*q1*q3) - P[17][2]*(2*q0*q1 - 2*q2*q3) + P[2][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[16][21]*(2*q0*q2 + 2*q1*q3) - P[17][21]*(2*q0*q1 - 2*q2*q3) + SH_MAG[1]*(P[21][0] + P[0][0]*SH_MAG[1] - P[1][0]*SH_MAG[2] + P[3][0]*SH_MAG[0] + P[18][0]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][0]*(2*q0*q2 + 2*q1*q3) - P[17][0]*(2*q0*q1 - 2*q2*q3) + P[2][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - SH_MAG[2]*(P[21][1] + P[0][1]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[3][1]*SH_MAG[0] + P[18][1]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][1]*(2*q0*q2 + 2*q1*q3) - P[17][1]*(2*q0*q1 - 2*q2*q3) + P[2][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[21][3] + P[0][3]*SH_MAG[1] - P[1][3]*SH_MAG[2] + P[3][3]*SH_MAG[0] + P[18][3]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][3]*(2*q0*q2 + 2*q1*q3) - P[17][3]*(2*q0*q1 - 2*q2*q3) + P[2][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6])*(P[21][18] + P[0][18]*SH_MAG[1] - P[1][18]*SH_MAG[2] + P[3][18]*SH_MAG[0] + P[18][18]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][18]*(2*q0*q2 + 2*q1*q3) - P[17][18]*(2*q0*q1 - 2*q2*q3) + P[2][18]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[2][21]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
_mag_innov_var[2] = (P[21][21] + R_MAG + P[0][21]*SH_MAG[1] - P[1][21]*SH_MAG[2] + P[3][21]*SH_MAG[0] + P[18][21]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + (2.0f*q0*q2 + 2.0f*q1*q3)*(P[21][16] + P[0][16]*SH_MAG[1] - P[1][16]*SH_MAG[2] + P[3][16]*SH_MAG[0] + P[18][16]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][16]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][16]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (2.0f*q0*q1 - 2.0f*q2*q3)*(P[21][17] + P[0][17]*SH_MAG[1] - P[1][17]*SH_MAG[2] + P[3][17]*SH_MAG[0] + P[18][17]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][17]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][17]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[21][2] + P[0][2]*SH_MAG[1] - P[1][2]*SH_MAG[2] + P[3][2]*SH_MAG[0] + P[18][2]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][2]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][2]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[16][21]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][21]*(2.0f*q0*q1 - 2.0f*q2*q3) + SH_MAG[1]*(P[21][0] + P[0][0]*SH_MAG[1] - P[1][0]*SH_MAG[2] + P[3][0]*SH_MAG[0] + P[18][0]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][0]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][0]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - SH_MAG[2]*(P[21][1] + P[0][1]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[3][1]*SH_MAG[0] + P[18][1]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][1]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][1]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[0]*(P[21][3] + P[0][3]*SH_MAG[1] - P[1][3]*SH_MAG[2] + P[3][3]*SH_MAG[0] + P[18][3]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][3]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][3]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6])*(P[21][18] + P[0][18]*SH_MAG[1] - P[1][18]*SH_MAG[2] + P[3][18]*SH_MAG[0] + P[18][18]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][18]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][18]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[2][21]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
// check for a badly conditioned covariance matrix
if (_mag_innov_var[2] >= R_MAG) {
@ -239,7 +237,7 @@ void Ekf::fuseMag() @@ -239,7 +237,7 @@ void Ekf::fuseMag()
_fault_status.flags.bad_mag_z = false;
} else if (_mag_innov_var[2] > 0.0f) {
// the innovation variance contribution from the state covariances is negtive which means the covariance matrix is badly conditioned
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned
_fault_status.flags.bad_mag_z = true;
// we need to re-initialise covariances and abort this fusion step
@ -249,11 +247,12 @@ void Ekf::fuseMag() @@ -249,11 +247,12 @@ void Ekf::fuseMag()
}
// Calculate Z axis Kalman gains
float SK_MZ[5];
SK_MZ[0] = 1.0f / _mag_innov_var[2];
SK_MZ[1] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
SK_MZ[2] = SH_MAG[7] + SH_MAG[8] - 2*magD*q2;
SK_MZ[3] = 2*q0*q1 - 2*q2*q3;
SK_MZ[4] = 2*q0*q2 + 2*q1*q3;
SK_MZ[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MZ[3] = 2.0f*q0*q1 - 2.0f*q2*q3;
SK_MZ[4] = 2.0f*q0*q2 + 2.0f*q1*q3;
Kfusion[0] = SK_MZ[0]*(P[0][21] + P[0][0]*SH_MAG[1] - P[0][1]*SH_MAG[2] + P[0][3]*SH_MAG[0] + P[0][2]*SK_MZ[2] + P[0][18]*SK_MZ[1] + P[0][16]*SK_MZ[4] - P[0][17]*SK_MZ[3]);
Kfusion[1] = SK_MZ[0]*(P[1][21] + P[1][0]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[1][3]*SH_MAG[0] + P[1][2]*SK_MZ[2] + P[1][18]*SK_MZ[1] + P[1][16]*SK_MZ[4] - P[1][17]*SK_MZ[3]);
@ -299,11 +298,11 @@ void Ekf::fuseMag() @@ -299,11 +298,11 @@ void Ekf::fuseMag()
// then calculate P - KHP
for (unsigned row = 0; row < _k_num_states; row++) {
for (unsigned column = 0; column <= 3; column++) {
KH[row][column] = Kfusion[row] * H_MAG[index][column];
KH[row][column] = Kfusion[row] * H_MAG[column];
}
for (unsigned column = 16; column <= 21; column++) {
KH[row][column] = Kfusion[row] * H_MAG[index][column];
KH[row][column] = Kfusion[row] * H_MAG[column];
}
}

Loading…
Cancel
Save