Browse Source

Minor cleanups in attitude control

sbg
Lorenz Meier 12 years ago
parent
commit
c2abe3997c
  1. 261
      apps/multirotor_att_control/multirotor_att_control_main.c
  2. 4
      apps/multirotor_att_control/multirotor_attitude_control.c

261
apps/multirotor_att_control/multirotor_att_control_main.c

@ -65,6 +65,7 @@
#include <uORB/topics/vehicle_rates_setpoint.h> #include <uORB/topics/vehicle_rates_setpoint.h>
#include <uORB/topics/sensor_combined.h> #include <uORB/topics/sensor_combined.h>
#include <uORB/topics/actuator_controls.h> #include <uORB/topics/actuator_controls.h>
#include <uORB/topics/parameter_update.h>
#include <systemlib/perf_counter.h> #include <systemlib/perf_counter.h>
#include <systemlib/systemlib.h> #include <systemlib/systemlib.h>
@ -104,6 +105,7 @@ mc_thread_main(int argc, char *argv[])
/* subscribe to attitude, motor setpoints and system state */ /* subscribe to attitude, motor setpoints and system state */
int att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); int att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
int param_sub = orb_subscribe(ORB_ID(parameter_update));
int att_setpoint_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); int att_setpoint_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
int setpoint_sub = orb_subscribe(ORB_ID(offboard_control_setpoint)); int setpoint_sub = orb_subscribe(ORB_ID(offboard_control_setpoint));
int state_sub = orb_subscribe(ORB_ID(vehicle_status)); int state_sub = orb_subscribe(ORB_ID(vehicle_status));
@ -118,7 +120,10 @@ mc_thread_main(int argc, char *argv[])
* rate-limit the attitude subscription to 200Hz to pace our loop * rate-limit the attitude subscription to 200Hz to pace our loop
* orb_set_interval(att_sub, 5); * orb_set_interval(att_sub, 5);
*/ */
struct pollfd fds = { .fd = att_sub, .events = POLLIN }; struct pollfd fds[2] = {
{ .fd = att_sub, .events = POLLIN },
{ .fd = param_sub, .events = POLLIN }
};
/* publish actuator controls */ /* publish actuator controls */
for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++) { for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++) {
@ -131,7 +136,9 @@ mc_thread_main(int argc, char *argv[])
int rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint)); int rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));
/* register the perf counter */ /* register the perf counter */
perf_counter_t mc_loop_perf = perf_alloc(PC_ELAPSED, "multirotor_att_control"); perf_counter_t mc_loop_perf = perf_alloc(PC_ELAPSED, "multirotor_att_control_runtime");
perf_counter_t mc_interval_perf = perf_alloc(PC_INTERVAL, "multirotor_att_control_interval");
perf_counter_t mc_err_perf = perf_alloc(PC_COUNT, "multirotor_att_control_err");
/* welcome user */ /* welcome user */
printf("[multirotor_att_control] starting\n"); printf("[multirotor_att_control] starting\n");
@ -140,143 +147,163 @@ mc_thread_main(int argc, char *argv[])
bool flag_control_manual_enabled = false; bool flag_control_manual_enabled = false;
bool flag_control_attitude_enabled = false; bool flag_control_attitude_enabled = false;
bool flag_system_armed = false; bool flag_system_armed = false;
bool man_yaw_zero_once = false;
while (!thread_should_exit) { while (!thread_should_exit) {
/* wait for a sensor update, check for exit condition every 500 ms */ /* wait for a sensor update, check for exit condition every 500 ms */
poll(&fds, 1, 500); int ret = poll(fds, 2, 500);
if (ret < 0) {
/* poll error, count it in perf */
perf_count(mc_err_perf);
} else if (ret == 0) {
/* no return value, ignore */
} else {
/* only update parameters if they changed */
if (fds[1].revents & POLLIN) {
/* read from param to clear updated flag */
struct parameter_update_s update;
orb_copy(ORB_ID(parameter_update), param_sub, &update);
/* update parameters */
// XXX no params here yet
}
perf_begin(mc_loop_perf); /* only run controller if attitude changed */
if (fds[0].revents & POLLIN) {
/* get a local copy of system state */ perf_begin(mc_loop_perf);
bool updated;
orb_check(state_sub, &updated); /* get a local copy of system state */
if (updated) { bool updated;
orb_copy(ORB_ID(vehicle_status), state_sub, &state); orb_check(state_sub, &updated);
} if (updated) {
/* get a local copy of manual setpoint */ orb_copy(ORB_ID(vehicle_status), state_sub, &state);
orb_copy(ORB_ID(manual_control_setpoint), manual_sub, &manual); }
/* get a local copy of attitude */ /* get a local copy of manual setpoint */
orb_copy(ORB_ID(vehicle_attitude), att_sub, &att); orb_copy(ORB_ID(manual_control_setpoint), manual_sub, &manual);
/* get a local copy of attitude setpoint */ /* get a local copy of attitude */
orb_copy(ORB_ID(vehicle_attitude_setpoint), att_setpoint_sub, &att_sp); orb_copy(ORB_ID(vehicle_attitude), att_sub, &att);
/* get a local copy of rates setpoint */ /* get a local copy of attitude setpoint */
orb_check(setpoint_sub, &updated); orb_copy(ORB_ID(vehicle_attitude_setpoint), att_setpoint_sub, &att_sp);
if (updated) { /* get a local copy of rates setpoint */
orb_copy(ORB_ID(offboard_control_setpoint), setpoint_sub, &offboard_sp); orb_check(setpoint_sub, &updated);
} if (updated) {
/* get a local copy of the current sensor values */ orb_copy(ORB_ID(offboard_control_setpoint), setpoint_sub, &offboard_sp);
orb_copy(ORB_ID(sensor_combined), sensor_sub, &raw); }
/* get a local copy of the current sensor values */
orb_copy(ORB_ID(sensor_combined), sensor_sub, &raw);
/** STEP 1: Define which input is the dominating control input */
if (state.flag_control_offboard_enabled) {
/* offboard inputs */ /** STEP 1: Define which input is the dominating control input */
if (offboard_sp.mode == OFFBOARD_CONTROL_MODE_DIRECT_RATES) { if (state.flag_control_offboard_enabled) {
rates_sp.roll = offboard_sp.p1; /* offboard inputs */
rates_sp.pitch = offboard_sp.p2; if (offboard_sp.mode == OFFBOARD_CONTROL_MODE_DIRECT_RATES) {
rates_sp.yaw = offboard_sp.p3; rates_sp.roll = offboard_sp.p1;
rates_sp.thrust = offboard_sp.p4; rates_sp.pitch = offboard_sp.p2;
// printf("thrust_rate=%8.4f\n",offboard_sp.p4); rates_sp.yaw = offboard_sp.p3;
rates_sp.thrust = offboard_sp.p4;
// printf("thrust_rate=%8.4f\n",offboard_sp.p4);
rates_sp.timestamp = hrt_absolute_time();
orb_publish(ORB_ID(vehicle_rates_setpoint), rates_sp_pub, &rates_sp);
} else if (offboard_sp.mode == OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE) {
att_sp.roll_body = offboard_sp.p1;
att_sp.pitch_body = offboard_sp.p2;
att_sp.yaw_body = offboard_sp.p3;
att_sp.thrust = offboard_sp.p4;
// printf("thrust_att=%8.4f\n",offboard_sp.p4);
att_sp.timestamp = hrt_absolute_time();
/* STEP 2: publish the result to the vehicle actuators */
orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp);
}
/* decide wether we want rate or position input */
}
else if (state.flag_control_manual_enabled) {
/* manual inputs, from RC control or joystick */
if (state.flag_control_rates_enabled && !state.flag_control_attitude_enabled) {
rates_sp.roll = manual.roll;
rates_sp.pitch = manual.pitch;
rates_sp.yaw = manual.yaw;
rates_sp.thrust = manual.throttle;
rates_sp.timestamp = hrt_absolute_time(); rates_sp.timestamp = hrt_absolute_time();
orb_publish(ORB_ID(vehicle_rates_setpoint), rates_sp_pub, &rates_sp); }
} else if (offboard_sp.mode == OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE) {
att_sp.roll_body = offboard_sp.p1; if (state.flag_control_attitude_enabled) {
att_sp.pitch_body = offboard_sp.p2;
att_sp.yaw_body = offboard_sp.p3; /* initialize to current yaw if switching to manual or att control */
att_sp.thrust = offboard_sp.p4; if (state.flag_control_attitude_enabled != flag_control_attitude_enabled ||
// printf("thrust_att=%8.4f\n",offboard_sp.p4); state.flag_control_manual_enabled != flag_control_manual_enabled ||
state.flag_system_armed != flag_system_armed) {
att_sp.yaw_body = att.yaw;
}
att_sp.roll_body = manual.roll;
att_sp.pitch_body = manual.pitch;
/* only move setpoint if manual input is != 0 */
// XXX turn into param
if ((manual.yaw < -0.01f || 0.01f < manual.yaw) && manual.throttle > 0.3f) {
att_sp.yaw_body = att_sp.yaw_body + manual.yaw * 0.0025f;
} else if (manual.throttle <= 0.3f) {
att_sp.yaw_body = att.yaw;
}
att_sp.thrust = manual.throttle;
att_sp.timestamp = hrt_absolute_time();
}
/* STEP 2: publish the result to the vehicle actuators */
orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp);
if (motor_test_mode) {
printf("testmode");
att_sp.roll_body = 0.0f;
att_sp.pitch_body = 0.0f;
att_sp.yaw_body = 0.0f;
att_sp.thrust = 0.1f;
att_sp.timestamp = hrt_absolute_time(); att_sp.timestamp = hrt_absolute_time();
/* STEP 2: publish the result to the vehicle actuators */ /* STEP 2: publish the result to the vehicle actuators */
orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp); orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp);
} }
/* decide wether we want rate or position input */
} }
else if (state.flag_control_manual_enabled) {
/* manual inputs, from RC control or joystick */
if (state.flag_control_rates_enabled && !state.flag_control_attitude_enabled) {
rates_sp.roll = manual.roll;
rates_sp.pitch = manual.pitch;
rates_sp.yaw = manual.yaw;
rates_sp.thrust = manual.throttle;
rates_sp.timestamp = hrt_absolute_time();
}
if (state.flag_control_attitude_enabled) {
/* initialize to current yaw if switching to manual or att control */ /** STEP 3: Identify the controller setup to run and set up the inputs correctly */
if (state.flag_control_attitude_enabled != flag_control_attitude_enabled || if (state.flag_control_attitude_enabled) {
state.flag_control_manual_enabled != flag_control_manual_enabled || multirotor_control_attitude(&att_sp, &att, &rates_sp, NULL);
state.flag_system_armed != flag_system_armed) { orb_publish(ORB_ID(vehicle_rates_setpoint), rates_sp_pub, &rates_sp);
att_sp.yaw_body = att.yaw;
} }
att_sp.roll_body = manual.roll; /* measure in what intervals the controller runs */
att_sp.pitch_body = manual.pitch; perf_count(mc_interval_perf);
/* only move setpoint if manual input is != 0 */ float gyro[3];
// XXX turn into param
if ((manual.yaw < -0.01f || 0.01f < manual.yaw) && manual.throttle > 0.3f) {
att_sp.yaw_body = att_sp.yaw_body + manual.yaw * 0.0025f;
} else if (manual.throttle <= 0.3f) {
att_sp.yaw_body = att.yaw;
}
att_sp.thrust = manual.throttle;
att_sp.timestamp = hrt_absolute_time();
}
/* STEP 2: publish the result to the vehicle actuators */
orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp);
if (motor_test_mode) {
printf("testmode");
att_sp.roll_body = 0.0f;
att_sp.pitch_body = 0.0f;
att_sp.yaw_body = 0.0f;
att_sp.thrust = 0.1f;
att_sp.timestamp = hrt_absolute_time();
/* STEP 2: publish the result to the vehicle actuators */
orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp);
}
}
/** STEP 3: Identify the controller setup to run and set up the inputs correctly */
if (state.flag_control_attitude_enabled) {
multirotor_control_attitude(&att_sp, &att, &rates_sp, NULL);
orb_publish(ORB_ID(vehicle_rates_setpoint), rates_sp_pub, &rates_sp);
}
/* get current rate setpoint */
bool rates_sp_valid = false;
orb_check(rates_sp_sub, &rates_sp_valid);
if (rates_sp_valid) {
orb_copy(ORB_ID(vehicle_rates_setpoint), rates_sp_sub, &rates_sp);
}
if (state.flag_control_rates_enabled) { /* apply controller */
gyro[0] = att.rollspeed;
float gyro[3]; gyro[1] = att.pitchspeed;
gyro[2] = att.yawspeed;
/* get current rate setpoint */
bool rates_sp_valid = false;
orb_check(rates_sp_sub, &rates_sp_valid);
if (rates_sp_valid) {
orb_copy(ORB_ID(vehicle_rates_setpoint), rates_sp_sub, &rates_sp);
}
/* apply controller */
gyro[0] = att.rollspeed;
gyro[1] = att.pitchspeed;
gyro[2] = att.yawspeed;
multirotor_control_rates(&rates_sp, gyro, &actuators); multirotor_control_rates(&rates_sp, gyro, &actuators);
orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators); orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators);
}
/* update state */ /* update state */
flag_control_attitude_enabled = state.flag_control_attitude_enabled; flag_control_attitude_enabled = state.flag_control_attitude_enabled;
flag_control_manual_enabled = state.flag_control_manual_enabled; flag_control_manual_enabled = state.flag_control_manual_enabled;
flag_system_armed = state.flag_system_armed; flag_system_armed = state.flag_system_armed;
perf_end(mc_loop_perf); perf_end(mc_loop_perf);
} /* end of poll call for attitude updates */
} /* end of poll return value check */
} }
printf("[multirotor att control] stopping, disarming motors.\n"); printf("[multirotor att control] stopping, disarming motors.\n");

4
apps/multirotor_att_control/multirotor_attitude_control.c

@ -199,9 +199,9 @@ void multirotor_control_attitude(const struct vehicle_attitude_setpoint_s *att_s
/* update parameters from storage */ /* update parameters from storage */
parameters_update(&h, &p); parameters_update(&h, &p);
/* apply parameters */ //printf("att ctrl: delays: %d us sens->ctrl, rate: %d Hz, input: %d Hz\n", sensor_delay, (int)(1.0f/deltaT), (int)(1.0f/dT_input));
printf("att ctrl: delays: %d us sens->ctrl, rate: %d Hz, input: %d Hz\n", sensor_delay, (int)(1.0f/deltaT), (int)(1.0f/dT_input));
/* apply parameters */
pid_set_parameters(&pitch_controller, p.att_p, p.att_i, p.att_d, 1000.0f, 1000.0f); pid_set_parameters(&pitch_controller, p.att_p, p.att_i, p.att_d, 1000.0f, 1000.0f);
pid_set_parameters(&roll_controller, p.att_p, p.att_i, p.att_d, 1000.0f, 1000.0f); pid_set_parameters(&roll_controller, p.att_p, p.att_i, p.att_d, 1000.0f, 1000.0f);
} }

Loading…
Cancel
Save