18 changed files with 0 additions and 2275 deletions
@ -1,83 +0,0 @@
@@ -1,83 +0,0 @@
|
||||
############################################################################ |
||||
# |
||||
# Copyright (c) 2020 PX4 Development Team. All rights reserved. |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions |
||||
# are met: |
||||
# |
||||
# 1. Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# 2. Redistributions in binary form must reproduce the above copyright |
||||
# notice, this list of conditions and the following disclaimer in |
||||
# the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# 3. Neither the name PX4 nor the names of its contributors may be |
||||
# used to endorse or promote products derived from this software |
||||
# without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
# POSSIBILITY OF SUCH DAMAGE. |
||||
# |
||||
############################################################################ |
||||
|
||||
set(LIBCANARD_DIR ${CMAKE_CURRENT_SOURCE_DIR}/libcanard) |
||||
set(DSDL_DIR ${CMAKE_CURRENT_SOURCE_DIR}/public_regulated_data_types) |
||||
|
||||
px4_add_git_submodule(TARGET git_libcanard PATH ${LIBCANARD_DIR}) |
||||
px4_add_git_submodule(TARGET git_public_regulated_data_types PATH ${DSDL_DIR}) |
||||
|
||||
find_program(NNVG_PATH nnvg) |
||||
if(NNVG_PATH) |
||||
execute_process(COMMAND ${NNVG_PATH} --outdir ${CMAKE_CURRENT_BINARY_DIR}/dsdlc_generated --target-language c -I ${DSDL_DIR}/uavcan ${DSDL_DIR}/reg) |
||||
execute_process(COMMAND ${NNVG_PATH} --outdir ${CMAKE_CURRENT_BINARY_DIR}/dsdlc_generated --target-language c ${DSDL_DIR}/uavcan) |
||||
|
||||
else() |
||||
message(FATAL_ERROR "UAVCAN Nunavut nnvg not found") |
||||
endif() |
||||
|
||||
add_definitions( |
||||
-DCONFIG_EXAMPLES_LIBCANARDV1_DEV="can0" |
||||
-DCONFIG_EXAMPLES_LIBCANARDV1_NODE_MEM_POOL_SIZE=8192 |
||||
-DCONFIG_EXAMPLES_LIBCANARDV1_DAEMON_STACK_SIZE=5000 |
||||
-DCONFIG_EXAMPLES_LIBCANARDV1_DAEMON_PRIORITY=100 |
||||
-DCANARD_DSDL_CONFIG_LITTLE_ENDIAN=1 |
||||
) |
||||
|
||||
px4_add_module( |
||||
MODULE drivers__uavcannode-gps-demo |
||||
MAIN uavcannode_gps_demo |
||||
COMPILE_FLAGS |
||||
-Wno-error |
||||
-DUINT32_C\(x\)=__UINT32_C\(x\) |
||||
INCLUDES |
||||
${LIBCANARD_DIR}/libcanard/ |
||||
${CMAKE_CURRENT_BINARY_DIR}/dsdlc_generated |
||||
SRCS |
||||
canard_main.c |
||||
socketcan.c |
||||
socketcan.h |
||||
uorb_converter.c |
||||
uorb_converter.h |
||||
o1heap.c |
||||
o1heap.h |
||||
libcancl/pnp.c |
||||
libcancl/registerinterface.c |
||||
${LIBCANARD_DIR}/libcanard/canard.c |
||||
${LIBCANARD_DIR}/libcanard/canard.h |
||||
DEPENDS |
||||
git_libcanard |
||||
git_public_regulated_data_types |
||||
drivers_bootloaders |
||||
version |
||||
) |
@ -1,5 +0,0 @@
@@ -1,5 +0,0 @@
|
||||
menuconfig DRIVERS_UAVCANNODE_GPS_DEMO |
||||
bool "uavcannode_gps_demo" |
||||
default n |
||||
---help--- |
||||
Enable support for uavcannode_gps_demo |
@ -1,469 +0,0 @@
@@ -1,469 +0,0 @@
|
||||
/****************************************************************************
|
||||
* examples/canard/canard_main.c |
||||
* |
||||
* Copyright (C) 2016 ETH Zuerich. All rights reserved. |
||||
* Author: Matthias Renner <rennerm@ethz.ch> |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name NuttX nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/****************************************************************************
|
||||
* Included Files |
||||
****************************************************************************/ |
||||
|
||||
#include <canard.h> |
||||
#include <canard_dsdl.h> |
||||
|
||||
#include <sched.h> |
||||
|
||||
#include <inttypes.h> |
||||
#include <stdio.h> |
||||
#include <stdlib.h> |
||||
#include <time.h> |
||||
#include <string.h> |
||||
#include <assert.h> |
||||
#include <errno.h> |
||||
|
||||
#include <net/if.h> |
||||
#include <sys/time.h> |
||||
#include <sys/ioctl.h> |
||||
#include <sys/socket.h> |
||||
|
||||
#include <poll.h> |
||||
|
||||
#include <nuttx/can.h> |
||||
#include <netpacket/can.h> |
||||
|
||||
#include "socketcan.h" |
||||
#include "o1heap.h" |
||||
#include "uorb_converter.h" |
||||
|
||||
#include "libcancl/pnp.h" |
||||
#include "libcancl/registerinterface.h" |
||||
|
||||
#include "boot_app_shared.h" |
||||
|
||||
/****************************************************************************
|
||||
* Pre-processor Definitions |
||||
****************************************************************************/ |
||||
|
||||
/* Arena for memory allocation, used by the library */ |
||||
#define O1_HEAP_SIZE CONFIG_EXAMPLES_LIBCANARDV1_NODE_MEM_POOL_SIZE |
||||
#define UNIQUE_ID_LENGTH_BYTES 16 |
||||
|
||||
/****************************************************************************
|
||||
* Private Data |
||||
****************************************************************************/ |
||||
/*
|
||||
* This is the AppImageDescriptor used |
||||
* by the make_can_boot_descriptor.py tool to set |
||||
* the application image's descriptor so that the |
||||
* uavcan bootloader has the ability to validate the |
||||
* image crc, size etc of this application |
||||
*/ |
||||
boot_app_shared_section app_descriptor_t AppDescriptor = { |
||||
.signature = APP_DESCRIPTOR_SIGNATURE, |
||||
.image_crc = 0, |
||||
.image_size = 0, |
||||
.git_hash = 0, |
||||
.major_version = APP_VERSION_MAJOR, |
||||
.minor_version = APP_VERSION_MINOR, |
||||
.board_id = HW_VERSION_MAJOR << 8 | HW_VERSION_MINOR, |
||||
.reserved = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } |
||||
}; |
||||
|
||||
O1HeapInstance *my_allocator; |
||||
static uint8_t uavcan_heap[O1_HEAP_SIZE] |
||||
__attribute__((aligned(O1HEAP_ALIGNMENT))); |
||||
|
||||
static uint8_t unique_id[UNIQUE_ID_LENGTH_BYTES] = { //FIXME real HW ID
|
||||
0x00, 0x00, 0x00, 0x00, |
||||
0x00, 0x00, 0x00, 0x00, |
||||
0x00, 0x00, 0x00, 0x00, |
||||
0x00, 0x00, 0x00, 0x01 |
||||
}; |
||||
|
||||
/* Node status variables */ |
||||
|
||||
static bool g_canard_daemon_started; |
||||
|
||||
static int16_t gps_uorb_port_id = -1; |
||||
static int16_t gps_fix_port_id = -1; |
||||
static int16_t gps_aux_port_id = -1; |
||||
|
||||
struct pollfd fd; |
||||
|
||||
/****************************************************************************
|
||||
* private functions |
||||
****************************************************************************/ |
||||
|
||||
|
||||
//TODO move this to a seperate file probably
|
||||
|
||||
int32_t set_gps_uorb_port_id(uavcan_register_Value_1_0 *value) |
||||
{ |
||||
if (uavcan_register_Value_1_0_is_natural16_(value) && value->natural16.value.count == 1) { // Natural 16
|
||||
//TODO check validity
|
||||
printf("Master: set uORB portID to %i\n", value->natural16.value.elements[0]); |
||||
gps_uorb_port_id = value->natural16.value.elements[0]; |
||||
return 0; |
||||
} |
||||
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
uavcan_register_Value_1_0 get_gps_uorb_port_id() |
||||
{ |
||||
void *dataReturn; |
||||
uavcan_register_Value_1_0 value; |
||||
|
||||
value.natural16.value.elements[0] = gps_uorb_port_id; |
||||
value.natural16.value.count = 1; |
||||
value._tag_ = 10; // TODO does nunavut generate ENUM/defines for this??
|
||||
return value; |
||||
} |
||||
|
||||
int32_t set_gps_fix_port_id(uavcan_register_Value_1_0 *value) |
||||
{ |
||||
if (uavcan_register_Value_1_0_is_natural16_(value) && value->natural16.value.count == 1) { // Natural 16
|
||||
//TODO check validity
|
||||
printf("Master: set FIX portID to %i\n", value->natural16.value.elements[0]); |
||||
gps_fix_port_id = value->natural16.value.elements[0]; |
||||
return 0; |
||||
} |
||||
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
uavcan_register_Value_1_0 get_gps_fix_port_id() |
||||
{ |
||||
void *dataReturn; |
||||
uavcan_register_Value_1_0 value; |
||||
|
||||
value.natural16.value.elements[0] = gps_fix_port_id; |
||||
value.natural16.value.count = 1; |
||||
value._tag_ = 10; // TODO does nunavut generate ENUM/defines for this??
|
||||
return value; |
||||
} |
||||
|
||||
int32_t set_gps_aux_port_id(uavcan_register_Value_1_0 *value) |
||||
{ |
||||
if (uavcan_register_Value_1_0_is_natural16_(value) && value->natural16.value.count == 1) { // Natural 16
|
||||
//TODO check validity
|
||||
printf("Master: set AUX portID to %i\n", value->natural16.value.elements[0]); |
||||
gps_fix_port_id = value->natural16.value.elements[0]; |
||||
return 0; |
||||
} |
||||
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
uavcan_register_Value_1_0 get_gps_aux_port_id() |
||||
{ |
||||
void *dataReturn; |
||||
uavcan_register_Value_1_0 value; |
||||
|
||||
value.natural16.value.elements[0] = gps_aux_port_id; |
||||
value.natural16.value.count = 1; |
||||
value._tag_ = 10; // TODO does nunavut generate ENUM/defines for this??
|
||||
return value; |
||||
} |
||||
|
||||
/****************************************************************************
|
||||
* Public Functions |
||||
****************************************************************************/ |
||||
|
||||
/****************************************************************************
|
||||
* Name: memAllocate |
||||
* |
||||
* Description: |
||||
* |
||||
****************************************************************************/ |
||||
static void *memAllocate(CanardInstance *const ins, const size_t amount) |
||||
{ |
||||
(void) ins; |
||||
return o1heapAllocate(my_allocator, amount); |
||||
} |
||||
|
||||
/****************************************************************************
|
||||
* Name: memFree |
||||
* |
||||
* Description: |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
static void memFree(CanardInstance *const ins, void *const pointer) |
||||
{ |
||||
(void) ins; |
||||
o1heapFree(my_allocator, pointer); |
||||
} |
||||
|
||||
/****************************************************************************
|
||||
* Name: getMonotonicTimestampUSec |
||||
* |
||||
* Description: |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
|
||||
uint64_t getMonotonicTimestampUSec(void) |
||||
{ |
||||
int ret; |
||||
struct timespec ts; |
||||
|
||||
memset(&ts, 0, sizeof(ts)); |
||||
|
||||
ret = clock_gettime(CLOCK_MONOTONIC, &ts); |
||||
|
||||
if (ret != 0) { |
||||
PX4_ERR("clock error %i", ret); |
||||
abort(); |
||||
} |
||||
|
||||
return ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000ULL; |
||||
} |
||||
|
||||
/****************************************************************************
|
||||
* Name: processTxRxOnce |
||||
* |
||||
* Description: |
||||
* Transmits all frames from the TX queue, receives up to one frame. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
void processTxRxOnce(CanardInstance *ins, CanardSocketInstance *sock_ins, int timeout_msec) |
||||
{ |
||||
int32_t result; |
||||
|
||||
/* Transmitting */ |
||||
|
||||
|
||||
for (const CanardFrame *txf = NULL; (txf = canardTxPeek(ins)) != NULL;) { // Look at the top of the TX queue.
|
||||
if (txf->timestamp_usec > getMonotonicTimestampUSec()) { // Check if the frame has timed out.
|
||||
if (socketcanTransmit(sock_ins, txf) == 0) { // Send the frame. Redundant interfaces may be used here.
|
||||
break; // If the driver is busy, break and retry later.
|
||||
} |
||||
|
||||
} else { |
||||
printf("Timeout??\n"); |
||||
} |
||||
|
||||
canardTxPop(ins); // Remove the frame from the queue after it's transmitted.
|
||||
ins->memory_free(ins, (CanardFrame *)txf); // Deallocate the dynamic memory afterwards.
|
||||
} |
||||
|
||||
|
||||
/* Poll receive */ |
||||
if (poll(&fd, 1, timeout_msec) <= 0) { |
||||
return; |
||||
} |
||||
|
||||
/* Receiving */ |
||||
CanardFrame received_frame; |
||||
|
||||
socketcanReceive(sock_ins, &received_frame); |
||||
|
||||
CanardTransfer receive; |
||||
result = canardRxAccept(ins, |
||||
&received_frame, // The CAN frame received from the bus.
|
||||
0, // If the transport is not redundant, use 0.
|
||||
&receive); |
||||
|
||||
if (result < 0) { |
||||
// An error has occurred: either an argument is invalid or we've ran out of memory.
|
||||
// It is possible to statically prove that an out-of-memory will never occur for a given application if
|
||||
// the heap is sized correctly; for background, refer to the Robson's Proof and the documentation for O1Heap.
|
||||
// Reception of an invalid frame is NOT an error.
|
||||
fprintf(stderr, "Receive error %" PRId32 "\n", result); |
||||
|
||||
} else if (result == 1) { |
||||
printf("Receive portId %i\n", receive.port_id); |
||||
|
||||
if (receive.port_id == PNPGetPortID(ins)) { |
||||
PNPProcess(ins, &receive); |
||||
|
||||
} else { |
||||
uavcan_register_interface_process(ins, &receive); |
||||
} |
||||
|
||||
ins->memory_free(ins, (void *)receive.payload); // Deallocate the dynamic memory afterwards.
|
||||
|
||||
} else { |
||||
// printf("RX canard %d\r\n", result);
|
||||
// Nothing to do.
|
||||
// The received frame is either invalid or it's a non-last frame of a multi-frame transfer.
|
||||
// Reception of an invalid frame is NOT reported as an error because it is not an error.
|
||||
} |
||||
|
||||
} |
||||
|
||||
/****************************************************************************
|
||||
* Name: canard_daemon |
||||
* |
||||
* Description: |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
static int canard_daemon(int argc, char *argv[]) |
||||
{ |
||||
int errval = 0; |
||||
int can_fd = 0; |
||||
|
||||
if (argc > 2) { |
||||
for (int args = 2; args < argc; args++) { |
||||
if (!strcmp(argv[args], "canfd")) { |
||||
can_fd = 1; |
||||
} |
||||
} |
||||
} |
||||
|
||||
my_allocator = o1heapInit(&uavcan_heap, O1_HEAP_SIZE, NULL, NULL); |
||||
|
||||
if (my_allocator == NULL) { |
||||
printf("o1heapInit failed with size %d\n", O1_HEAP_SIZE); |
||||
errval = 2; |
||||
goto errout_with_dev; |
||||
} |
||||
|
||||
CanardInstance ins = canardInit(&memAllocate, &memFree); |
||||
|
||||
if (can_fd) { |
||||
ins.mtu_bytes = CANARD_MTU_CAN_FD; |
||||
|
||||
} else { |
||||
ins.mtu_bytes = CANARD_MTU_CAN_CLASSIC; |
||||
} |
||||
|
||||
/* Open the CAN device for reading */ |
||||
CanardSocketInstance sock_ins; |
||||
socketcanOpen(&sock_ins, CONFIG_EXAMPLES_LIBCANARDV1_DEV, can_fd); |
||||
|
||||
/* setup poll fd */ |
||||
fd.fd = sock_ins.s; |
||||
fd.events = POLLIN; |
||||
|
||||
if (sock_ins.s < 0) { |
||||
printf("canard_daemon: ERROR: open %s failed: %d\n", |
||||
CONFIG_EXAMPLES_LIBCANARDV1_DEV, errno); |
||||
errval = 2; |
||||
goto errout_with_dev; |
||||
} |
||||
|
||||
/* libcancl functions */ |
||||
|
||||
/* Dynamic NodeId */ |
||||
|
||||
/* Init UAVCAN register interfaces */ |
||||
uavcan_node_GetInfo_Response_1_0 node_information; // TODO ADD INFO
|
||||
uavcan_register_interface_init(&ins, &node_information); |
||||
uavcan_register_interface_add_entry("uorb.sensor_gps.0", set_gps_uorb_port_id, get_gps_uorb_port_id); |
||||
uavcan_register_interface_add_entry("gnss_fix", set_gps_fix_port_id, get_gps_fix_port_id); |
||||
uavcan_register_interface_add_entry("gnss_aux", set_gps_aux_port_id, get_gps_aux_port_id); |
||||
|
||||
initPNPAllocatee(&ins, unique_id); |
||||
|
||||
uint32_t random_no; |
||||
random_no = ((float)rand() / RAND_MAX) * (1000000); |
||||
|
||||
uint64_t next_alloc_req = getMonotonicTimestampUSec() + random_no; |
||||
|
||||
while (ins.node_id == CANARD_NODE_ID_UNSET) { |
||||
// process the TX and RX buffer
|
||||
processTxRxOnce(&ins, &sock_ins, 10); //10Ms
|
||||
|
||||
const uint64_t ts = getMonotonicTimestampUSec(); |
||||
|
||||
if (ts >= next_alloc_req) { |
||||
next_alloc_req += ((float)rand() / RAND_MAX) * (1000000); |
||||
int32_t result = PNPAllocRequest(&ins); |
||||
|
||||
if (result) { |
||||
ins.node_id = PNPGetNodeID(); |
||||
} |
||||
} |
||||
} |
||||
|
||||
printf("canard_daemon: canard initialized\n"); |
||||
printf("start node (ID: %d MTU: %d)\n", ins.node_id, |
||||
ins.mtu_bytes); |
||||
|
||||
/* Initialize uORB publishers & subscribers */ |
||||
uorbConverterInit(&ins, &gps_uorb_port_id, &gps_fix_port_id, &gps_aux_port_id); |
||||
|
||||
g_canard_daemon_started = true; |
||||
uint64_t next_1hz_service_at = getMonotonicTimestampUSec(); |
||||
|
||||
for (;;) { |
||||
processTxRxOnce(&ins, &sock_ins, 10); |
||||
|
||||
uorbProcessSub(10); |
||||
|
||||
} |
||||
|
||||
errout_with_dev: |
||||
|
||||
g_canard_daemon_started = false; |
||||
printf("canard_daemon: Terminating!\n"); |
||||
fflush(stdout); |
||||
return errval; |
||||
} |
||||
|
||||
|
||||
/****************************************************************************
|
||||
* Name: canard_main |
||||
* |
||||
* Description: |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
int uavcannode_gps_demo_main(int argc, FAR char *argv[]) |
||||
{ |
||||
int ret; |
||||
|
||||
printf("canard_main: Starting canard_daemon\n"); |
||||
|
||||
if (g_canard_daemon_started) { |
||||
printf("canard_main: receive and send task already running\n"); |
||||
return EXIT_SUCCESS; |
||||
} |
||||
|
||||
ret = task_create("canard_daemon", CONFIG_EXAMPLES_LIBCANARDV1_DAEMON_PRIORITY, |
||||
CONFIG_EXAMPLES_LIBCANARDV1_DAEMON_STACK_SIZE, canard_daemon, |
||||
argv); |
||||
|
||||
if (ret < 0) { |
||||
int errcode = errno; |
||||
printf("canard_main: ERROR: Failed to start canard_daemon: %d\n", |
||||
errcode); |
||||
return EXIT_FAILURE; |
||||
} |
||||
|
||||
printf("canard_main: canard_daemon started\n"); |
||||
return EXIT_SUCCESS; |
||||
} |
@ -1 +0,0 @@
@@ -1 +0,0 @@
|
||||
Subproject commit 2a116170285fb47fcaae150ad21c2ccde0756a5f |
@ -1,12 +0,0 @@
@@ -1,12 +0,0 @@
|
||||
# libcancl |
||||
|
||||
Libcanard client library, that implements common client functionality for use with UAVCAN/CAN |
||||
Current features are |
||||
|
||||
- UAVCAN PNP client |
||||
- UAVCAN Register interface |
||||
- UAVCAN GetInfo responder |
||||
|
||||
# TODO's |
||||
- UAVCAN ExecuteCommand implementation |
||||
- UAVCAN diagnostic abstraction/helper |
@ -1,264 +0,0 @@
@@ -1,264 +0,0 @@
|
||||
/****************************************************************************
|
||||
* nxp_bms/BMS_v1/src/UAVCAN/pnp.c |
||||
* |
||||
* BSD 3-Clause License |
||||
* |
||||
* Copyright 2020 NXP |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright notice, this |
||||
* list of conditions and the following disclaimer. |
||||
* |
||||
* 2. Redistributions in binary form must reproduce the above copyright notice, |
||||
* this list of conditions and the following disclaimer in the documentation |
||||
* and/or other materials provided with the distribution. |
||||
* |
||||
* 3. Neither the name of the copyright holder nor the names of its |
||||
* contributors may be used to endorse or promote products derived from |
||||
* this software without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
#include "pnp.h" |
||||
|
||||
// Use NuttX crc64 function TODO fallback header for other platforms
|
||||
#include <crc64.h> |
||||
|
||||
#include "uavcan/node/ID_1_0.h" |
||||
#include "uavcan/pnp/NodeIDAllocationData_1_0.h" |
||||
#include "uavcan/pnp/NodeIDAllocationData_2_0.h" |
||||
|
||||
#define PNP1_PORT_ID uavcan_pnp_NodeIDAllocationData_1_0_FIXED_PORT_ID_ |
||||
#define PNP1_PAYLOAD_SIZE uavcan_pnp_NodeIDAllocationData_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_ |
||||
#define PNP2_PORT_ID uavcan_pnp_NodeIDAllocationData_2_0_FIXED_PORT_ID_ |
||||
#define PNP2_PAYLOAD_SIZE uavcan_pnp_NodeIDAllocationData_2_0_SERIALIZATION_BUFFER_SIZE_BYTES_ |
||||
|
||||
#define PNP_UNIQUE_ID_SIZE 16 // 128 bit unique id
|
||||
|
||||
#define PNP_NODE_ID_NO_PREFERENCE CANARD_NODE_ID_MAX - 2 // No preference -> highest possible node ID, note: the two highest node-ID values are reserved for network maintenance tools
|
||||
|
||||
/****************************************************************************
|
||||
* private data |
||||
****************************************************************************/ |
||||
|
||||
CanardRxSubscription allocSub; |
||||
|
||||
// 128 bit unique id
|
||||
uint8_t local_unique_id[PNP_UNIQUE_ID_SIZE]; |
||||
|
||||
const CanardNodeID preffered_node_id = PNP_NODE_ID_NO_PREFERENCE; |
||||
|
||||
CanardNodeID node_id = CANARD_NODE_ID_UNSET; |
||||
|
||||
CanardTransferID node_id_alloc_transfer_id = 0; |
||||
|
||||
/****************************************************************************
|
||||
* private Functions declerations |
||||
****************************************************************************/ |
||||
|
||||
uint64_t makePseudoUniqueId(uint8_t *pUniqueID) |
||||
{ |
||||
// NuttX CRC64/WE implementation
|
||||
return crc64(pUniqueID, PNP_UNIQUE_ID_SIZE); |
||||
} |
||||
|
||||
|
||||
/****************************************************************************
|
||||
* public functions |
||||
****************************************************************************/ |
||||
|
||||
/* Rule A. On initialization:
|
||||
* 1. The allocatee subscribes to this message. |
||||
* 2. The allocatee starts the Request Timer with a random interval [0, 1) sec of Trequest. |
||||
*/ |
||||
|
||||
uint32_t initPNPAllocatee(CanardInstance *ins, uint8_t *unique_id) |
||||
{ |
||||
// Store unique_id locally
|
||||
memcpy(&local_unique_id[0], &unique_id[0], sizeof(local_unique_id)); |
||||
|
||||
// Create RX Subscriber so we can listen to NodeIDAllocationData msgs
|
||||
(void) canardRxSubscribe(ins, // Subscribe to messages uavcan.node.Heartbeat.
|
||||
CanardTransferKindMessage, |
||||
(ins->mtu_bytes == CANARD_MTU_CAN_FD ? PNP2_PORT_ID : PNP1_PORT_ID), // The fixed Subject-ID
|
||||
(ins->mtu_bytes == CANARD_MTU_CAN_FD ? PNP2_PAYLOAD_SIZE : PNP1_PAYLOAD_SIZE), |
||||
CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, |
||||
&allocSub); |
||||
|
||||
// Callee should start a timer with a random interval between 0 and 1 sec
|
||||
} |
||||
|
||||
/* Rule B. On expiration of the Request Timer (started as per rules A, B, or C):
|
||||
* 1. Request Timer restarts with a random interval [0, 1) sec of Trequest (chosen anew). |
||||
* 2. The allocatee broadcasts an allocation request message, where the fields are populated as follows: |
||||
* unique_id_hash - a 48-bit hash of the unique-ID of the allocatee. |
||||
* allocated_node_id - empty (not populated). |
||||
*/ |
||||
int32_t PNPAllocRequest(CanardInstance *ins) |
||||
{ |
||||
int32_t result; |
||||
CanardMicrosecond transmission_deadline = getMonotonicTimestampUSec() + 1000 * 10; |
||||
|
||||
// Callee should restart timer
|
||||
|
||||
// Allocation already done, nothing to do TODO maybe stop subscribing
|
||||
if (node_id != CANARD_NODE_ID_UNSET) { |
||||
return 1; |
||||
} |
||||
|
||||
if (ins->mtu_bytes == CANARD_MTU_CAN_FD) { |
||||
// NodeIDAllocationData message
|
||||
uavcan_pnp_NodeIDAllocationData_2_0 node_id_alloc_msg; |
||||
uint8_t node_id_alloc_payload_buffer[PNP2_PAYLOAD_SIZE]; |
||||
|
||||
memcpy(node_id_alloc_msg.unique_id, local_unique_id, sizeof(node_id_alloc_msg.unique_id)); |
||||
node_id_alloc_msg.node_id.value = preffered_node_id; |
||||
|
||||
CanardTransfer transfer = { |
||||
.timestamp_usec = transmission_deadline, // Zero if transmission deadline is not limited.
|
||||
.priority = CanardPriorityNominal, |
||||
.transfer_kind = CanardTransferKindMessage, |
||||
.port_id = PNP2_PORT_ID, // This is the subject-ID.
|
||||
.remote_node_id = CANARD_NODE_ID_UNSET, // Messages cannot be unicast, so use UNSET.
|
||||
.transfer_id = node_id_alloc_transfer_id, |
||||
.payload_size = PNP2_PAYLOAD_SIZE, |
||||
.payload = &node_id_alloc_payload_buffer, |
||||
}; |
||||
|
||||
result = uavcan_pnp_NodeIDAllocationData_2_0_serialize_(&node_id_alloc_msg, &node_id_alloc_payload_buffer, |
||||
&transfer.payload_size); |
||||
|
||||
if (result == 0) { |
||||
// set the data ready in the buffer and chop if needed
|
||||
++node_id_alloc_transfer_id; // The transfer-ID shall be incremented after every transmission on this subject.
|
||||
result = canardTxPush(ins, &transfer); |
||||
} |
||||
|
||||
} else { |
||||
// NodeIDAllocationData message
|
||||
uavcan_pnp_NodeIDAllocationData_1_0 node_id_alloc_msg; |
||||
uavcan_pnp_NodeIDAllocationData_1_0_initialize_(&node_id_alloc_msg); |
||||
uint8_t node_id_alloc_payload_buffer[PNP1_PAYLOAD_SIZE]; |
||||
|
||||
node_id_alloc_msg.unique_id_hash = (makePseudoUniqueId(local_unique_id) & 0xFFFFFFFFFFFF); |
||||
|
||||
CanardTransfer transfer = { |
||||
.timestamp_usec = transmission_deadline, // Zero if transmission deadline is not limited.
|
||||
.priority = CanardPriorityNominal, |
||||
.transfer_kind = CanardTransferKindMessage, |
||||
.port_id = PNP1_PORT_ID, // This is the subject-ID.
|
||||
.remote_node_id = CANARD_NODE_ID_UNSET, // Messages cannot be unicast, so use UNSET.
|
||||
.transfer_id = node_id_alloc_transfer_id, |
||||
.payload_size = PNP1_PAYLOAD_SIZE, |
||||
.payload = &node_id_alloc_payload_buffer, |
||||
}; |
||||
|
||||
result = uavcan_pnp_NodeIDAllocationData_1_0_serialize_(&node_id_alloc_msg, &node_id_alloc_payload_buffer, |
||||
&transfer.payload_size); |
||||
|
||||
if (result == 0) { |
||||
// set the data ready in the buffer and chop if needed
|
||||
++node_id_alloc_transfer_id; // The transfer-ID shall be incremented after every transmission on this subject.
|
||||
result = canardTxPush(ins, &transfer); |
||||
} |
||||
} |
||||
|
||||
|
||||
if (result < 0) { |
||||
// An error has occurred: either an argument is invalid or we've ran out of memory.
|
||||
// It is possible to statically prove that an out-of-memory will never occur for a given application if the
|
||||
// heap is sized correctly; for background, refer to the Robson's Proof and the documentation for O1Heap.
|
||||
return result; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/* Rule C. On any allocation message, even if other rules also match:
|
||||
* 1. Request Timer restarts with a random interval of Trequest (chosen anew). |
||||
* |
||||
* Rule D. On an allocation message WHERE (source node-ID is non-anonymous, i.e., regular allocation response) |
||||
* AND (the field unique_id_hash matches the allocatee's 48-bit unique-ID hash) |
||||
* AND (the field allocated_node_id is populated): |
||||
* 1. Request Timer stops. |
||||
* 2. The allocatee initializes its node-ID with the received value. |
||||
* 3. The allocatee terminates its subscription to allocation messages. |
||||
* 4. Exit. |
||||
*/ |
||||
int32_t PNPProcess(CanardInstance *ins, CanardTransfer *transfer) |
||||
{ |
||||
|
||||
// Allocation already done, nothing to do
|
||||
if (node_id != CANARD_NODE_ID_UNSET) { |
||||
return 1; |
||||
} |
||||
|
||||
if (transfer->remote_node_id == CANARD_NODE_ID_UNSET) { // Another request, ignore.
|
||||
return 0; |
||||
} |
||||
|
||||
int32_t allocated = CANARD_NODE_ID_UNSET; |
||||
|
||||
if (ins->mtu_bytes == CANARD_MTU_CAN_FD) { |
||||
uavcan_pnp_NodeIDAllocationData_2_0 msg; |
||||
|
||||
size_t pnp_in_size_bits = transfer->payload_size; |
||||
uavcan_pnp_NodeIDAllocationData_2_0_deserialize_(&msg, transfer->payload, &pnp_in_size_bits); |
||||
|
||||
if (memcmp(msg.unique_id, local_unique_id, sizeof(msg.unique_id)) == 0) { |
||||
allocated = msg.node_id.value; |
||||
} |
||||
|
||||
} else { |
||||
uavcan_pnp_NodeIDAllocationData_1_0 msg; |
||||
|
||||
size_t pnp_in_size_bits = transfer->payload_size; |
||||
uavcan_pnp_NodeIDAllocationData_1_0_deserialize_(&msg, transfer->payload, &pnp_in_size_bits); |
||||
|
||||
if (msg.allocated_node_id.count > 0) { |
||||
if (msg.unique_id_hash == (makePseudoUniqueId(local_unique_id) & 0xFFFFFFFFFFFF)) { |
||||
allocated = msg.allocated_node_id.elements[0].value; |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (allocated == CANARD_NODE_ID_UNSET) { |
||||
return -1; // UID mismatch.
|
||||
} |
||||
|
||||
if (allocated <= 0 || allocated >= CANARD_NODE_ID_MAX) |
||||
// Allocated node-ID ignored because it exceeds max_node_id
|
||||
{ |
||||
return -1; |
||||
} |
||||
|
||||
// Plug-and-play allocation done: got node-ID %s from server %s', allocated, meta.source_node_id)
|
||||
node_id = allocated; |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
|
||||
CanardNodeID PNPGetNodeID() |
||||
{ |
||||
return node_id; |
||||
} |
||||
|
||||
|
||||
CanardPortID PNPGetPortID(CanardInstance *ins) |
||||
{ |
||||
return (ins->mtu_bytes == CANARD_MTU_CAN_FD ? PNP2_PORT_ID : PNP1_PORT_ID); |
||||
} |
@ -1,74 +0,0 @@
@@ -1,74 +0,0 @@
|
||||
/****************************************************************************
|
||||
* nxp_bms/BMS_v1/inc/UAVCAN/pnp.h |
||||
* |
||||
* BSD 3-Clause License |
||||
* |
||||
* Copyright 2020 NXP |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright notice, this |
||||
* list of conditions and the following disclaimer. |
||||
* |
||||
* 2. Redistributions in binary form must reproduce the above copyright notice, |
||||
* this list of conditions and the following disclaimer in the documentation |
||||
* and/or other materials provided with the distribution. |
||||
* |
||||
* 3. Neither the name of the copyright holder nor the names of its |
||||
* contributors may be used to endorse or promote products derived from |
||||
* this software without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
** ################################################################### |
||||
** Filename : pnp.h |
||||
** Project : SmartBattery_RDDRONE_BMS772 |
||||
** Processor : S32K144 |
||||
** Version : 1.00 |
||||
** Date : 2020-10-29 |
||||
** Abstract : |
||||
** pnp module. |
||||
** |
||||
** ###################################################################*/ |
||||
/*!
|
||||
** @file pnp.h |
||||
** |
||||
** @version 01.00 |
||||
** |
||||
** @brief |
||||
** pnp module. this module implements the UAVCAN plug and play protocol |
||||
** |
||||
*/ |
||||
|
||||
#ifndef UAVCAN_PNP_H_ |
||||
#define UAVCAN_PNP_H_ |
||||
|
||||
#define NUNAVUT_ASSERT |
||||
#include <canard.h> |
||||
|
||||
#include "time.h" |
||||
|
||||
|
||||
uint32_t initPNPAllocatee(CanardInstance *ins, uint8_t *unique_id); |
||||
|
||||
int32_t PNPAllocRequest(CanardInstance *ins); |
||||
|
||||
int32_t PNPProcess(CanardInstance *ins, CanardTransfer *transfer); |
||||
|
||||
CanardNodeID PNPGetNodeID(); |
||||
|
||||
const CanardPortID PNPGetPortID(); |
||||
|
||||
|
||||
|
||||
#endif //UAVCAN_PNP_H_
|
@ -1,282 +0,0 @@
@@ -1,282 +0,0 @@
|
||||
|
||||
#include "registerinterface.h" |
||||
|
||||
#include "uavcan/_register/Access_1_0.h" |
||||
#include "uavcan/_register/List_1_0.h" |
||||
#include "uavcan/_register/Name_1_0.h" |
||||
#include "uavcan/_register/Value_1_0.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
|
||||
/****************************************************************************
|
||||
* private data |
||||
****************************************************************************/ |
||||
|
||||
uavcan_node_GetInfo_Response_1_0 *node_info; |
||||
CanardTransferID getinfo_response_transfer_id = 0; |
||||
CanardTransferID register_access_response_transfer_id = 0; |
||||
CanardTransferID register_list_response_transfer_id = 0; |
||||
|
||||
CanardRxSubscription getinfo_subscription; |
||||
CanardRxSubscription register_access_subscription; |
||||
CanardRxSubscription register_list_subscription; |
||||
|
||||
//TODO register list and data
|
||||
uavcan_register_interface_entry register_list[UAVCAN_REGISTER_COUNT]; |
||||
uint32_t register_list_size = 0; |
||||
|
||||
/****************************************************************************
|
||||
* public functions |
||||
****************************************************************************/ |
||||
|
||||
int32_t uavcan_register_interface_init(CanardInstance *ins, uavcan_node_GetInfo_Response_1_0 *info) |
||||
{ |
||||
node_info = info; //TODO think about retention, copy isntead?
|
||||
|
||||
(void) canardRxSubscribe(ins, |
||||
CanardTransferKindRequest, |
||||
uavcan_node_GetInfo_1_0_FIXED_PORT_ID_, |
||||
uavcan_node_GetInfo_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_, |
||||
CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, |
||||
&getinfo_subscription); |
||||
|
||||
(void) canardRxSubscribe(ins, |
||||
CanardTransferKindRequest, |
||||
uavcan_register_Access_1_0_FIXED_PORT_ID_, |
||||
uavcan_register_Access_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_, |
||||
CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, |
||||
®ister_access_subscription); |
||||
|
||||
(void) canardRxSubscribe(ins, |
||||
CanardTransferKindRequest, |
||||
uavcan_register_List_1_0_FIXED_PORT_ID_, |
||||
uavcan_register_List_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_, |
||||
CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, |
||||
®ister_list_subscription); |
||||
} |
||||
|
||||
int32_t uavcan_register_interface_add_entry(const char *name, register_access_set_callback cb_set, |
||||
register_access_get_callback cb_get) |
||||
{ |
||||
if (register_list_size < UAVCAN_REGISTER_COUNT) { |
||||
register_list[register_list_size].name = name; |
||||
register_list[register_list_size].cb_set = cb_set; |
||||
register_list[register_list_size].cb_get = cb_get; |
||||
register_list_size++; |
||||
return 0; |
||||
|
||||
} else { |
||||
return -UAVCAN_REGISTER_ERROR_OUT_OF_MEMORY; // register list full
|
||||
} |
||||
|
||||
} |
||||
|
||||
// Handler for all PortID registration related messages
|
||||
int32_t uavcan_register_interface_process(CanardInstance *ins, CanardTransfer *transfer) |
||||
{ |
||||
if (transfer->port_id == uavcan_node_GetInfo_1_0_FIXED_PORT_ID_) { |
||||
return uavcan_register_interface_get_info_response(ins, transfer); |
||||
|
||||
} else if (transfer->port_id == uavcan_register_Access_1_0_FIXED_PORT_ID_) { |
||||
return uavcan_register_interface_access_response(ins, transfer); |
||||
|
||||
} else if (transfer->port_id == uavcan_register_List_1_0_FIXED_PORT_ID_) { |
||||
return uavcan_register_interface_list_response(ins, transfer); |
||||
} |
||||
|
||||
return 0; // Nothing to do
|
||||
} |
||||
|
||||
// Handler for node.GetInfo which yields a response
|
||||
int32_t uavcan_register_interface_get_info_response(CanardInstance *ins, CanardTransfer *request) |
||||
{ |
||||
uavcan_node_GetInfo_Request_1_0 msg; |
||||
|
||||
size_t in_size_bits; |
||||
|
||||
if (uavcan_node_GetInfo_Request_1_0_deserialize_(&msg, request->payload, request->payload_size) < 0) { |
||||
//Error deserialize failed
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
//Note so technically the uavcan_node_GetInfo_Request_1_0 is an empty message not sure if the code above is required
|
||||
|
||||
// Setup node.GetInfo response
|
||||
|
||||
uint8_t response_payload_buffer[uavcan_node_GetInfo_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_]; |
||||
|
||||
CanardMicrosecond transmission_deadline = getMonotonicTimestampUSec() + 1000 * 100; |
||||
|
||||
CanardTransfer response = { |
||||
.timestamp_usec = transmission_deadline, // Zero if transmission deadline is not limited.
|
||||
.priority = CanardPriorityNominal, |
||||
.transfer_kind = CanardTransferKindResponse, |
||||
.port_id = uavcan_node_GetInfo_1_0_FIXED_PORT_ID_, // This is the subject-ID.
|
||||
.remote_node_id = request->remote_node_id, // Send back to request Node
|
||||
.transfer_id = getinfo_response_transfer_id, |
||||
.payload_size = uavcan_node_GetInfo_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_, |
||||
.payload = &response_payload_buffer, |
||||
}; |
||||
|
||||
int32_t result = uavcan_node_GetInfo_Response_1_0_serialize_(node_info, &response_payload_buffer, |
||||
&response.payload_size); |
||||
|
||||
if (result == 0) { |
||||
// set the data ready in the buffer and chop if needed
|
||||
++getinfo_response_transfer_id; // The transfer-ID shall be incremented after every transmission on this subject.
|
||||
result = canardTxPush(ins, &response); |
||||
} |
||||
|
||||
if (result < 0) { |
||||
// An error has occurred: either an argument is invalid or we've ran out of memory.
|
||||
// It is possible to statically prove that an out-of-memory will never occur for a given application if the
|
||||
// heap is sized correctly; for background, refer to the Robson's Proof and the documentation for O1Heap.
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
return 1; |
||||
|
||||
} |
||||
|
||||
// Handler for register access interface
|
||||
int32_t uavcan_register_interface_access_response(CanardInstance *ins, CanardTransfer *request) |
||||
{ |
||||
|
||||
int index; |
||||
{ |
||||
uavcan_register_Access_Request_1_0 msg; |
||||
|
||||
if (uavcan_register_Access_Request_1_0_deserialize_(&msg, request->payload, &request->payload_size) < 0) { |
||||
//Error deserialize failed
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
{ |
||||
char register_string[255]; |
||||
int reg_str_len; |
||||
|
||||
for (index = 0; index < register_list_size; index++) { |
||||
reg_str_len = sprintf(register_string, "uavcan.pub.%s.id", |
||||
register_list[index].name); //TODO more option then pub (sub rate etc)
|
||||
|
||||
if (strncmp(msg.name.name.elements, register_string, reg_str_len) == 0) { |
||||
if (msg.value._tag_ != 0) { // Value has been set thus we call set handler
|
||||
if (register_list[index].cb_set(&msg.value) != 0) { |
||||
// TODO error ocurred check doc for correct response
|
||||
} |
||||
} |
||||
|
||||
break; // We're done exit loop
|
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
uavcan_register_Access_Response_1_0 response_msg; |
||||
uavcan_register_Access_Response_1_0_initialize_(&response_msg); |
||||
|
||||
if (index < register_list_size) { // Index is available
|
||||
response_msg.value = register_list[index].cb_get(); |
||||
|
||||
} else { // Index not found return empty response
|
||||
uavcan_register_Value_1_0_initialize_(&response_msg.value); |
||||
uavcan_register_Value_1_0_select_empty_(&response_msg.value); |
||||
} |
||||
|
||||
uint8_t response_payload_buffer[uavcan_register_Access_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_]; |
||||
|
||||
CanardMicrosecond transmission_deadline = getMonotonicTimestampUSec() + 1000 * 100; |
||||
|
||||
CanardTransfer response = { |
||||
.timestamp_usec = transmission_deadline, // Zero if transmission deadline is not limited.
|
||||
.priority = CanardPriorityNominal, |
||||
.transfer_kind = CanardTransferKindResponse, |
||||
.port_id = uavcan_register_Access_1_0_FIXED_PORT_ID_, // This is the subject-ID.
|
||||
.remote_node_id = request->remote_node_id, // Send back to request Node
|
||||
.transfer_id = register_list_response_transfer_id, |
||||
.payload_size = uavcan_register_Access_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_, |
||||
.payload = &response_payload_buffer, |
||||
}; |
||||
|
||||
int32_t result = uavcan_register_Access_Response_1_0_serialize_(&response_msg, &response_payload_buffer, |
||||
&response.payload_size); |
||||
|
||||
if (result == 0) { |
||||
// set the data ready in the buffer and chop if needed
|
||||
++register_access_response_transfer_id; // The transfer-ID shall be incremented after every transmission on this subject.
|
||||
result = canardTxPush(ins, &response); |
||||
} |
||||
|
||||
if (result < 0) { |
||||
// An error has occurred: either an argument is invalid or we've ran out of memory.
|
||||
// It is possible to statically prove that an out-of-memory will never occur for a given application if the
|
||||
// heap is sized correctly; for background, refer to the Robson's Proof and the documentation for O1Heap.
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
// Handler for register list interface
|
||||
int32_t uavcan_register_interface_list_response(CanardInstance *ins, CanardTransfer *request) |
||||
{ |
||||
uavcan_register_List_Request_1_0 msg; |
||||
|
||||
if (uavcan_register_List_Request_1_0_deserialize_(&msg, request->payload, &request->payload_size) < 0) { |
||||
//Error deserialize failed
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
//Setup register response
|
||||
|
||||
uint8_t response_payload_buffer[uavcan_register_List_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_]; //TODO we know already how big our response is, don't overallocate.
|
||||
|
||||
CanardMicrosecond transmission_deadline = getMonotonicTimestampUSec() + 1000 * 100; |
||||
|
||||
uavcan_register_List_Response_1_0 response_msg; |
||||
|
||||
// Reponse magic start
|
||||
|
||||
if (msg.index < register_list_size) { |
||||
response_msg.name.name.count = sprintf(response_msg.name.name.elements, |
||||
"uavcan.pub.%s.id", |
||||
register_list[msg.index].name); |
||||
|
||||
} else { |
||||
response_msg.name.name.count = 0; |
||||
} |
||||
|
||||
//TODO more option then pub (sub rate
|
||||
|
||||
// Response magic end
|
||||
|
||||
CanardTransfer response = { |
||||
.timestamp_usec = transmission_deadline, // Zero if transmission deadline is not limited.
|
||||
.priority = CanardPriorityNominal, |
||||
.transfer_kind = CanardTransferKindResponse, |
||||
.port_id = uavcan_register_List_1_0_FIXED_PORT_ID_, // This is the subject-ID.
|
||||
.remote_node_id = request->remote_node_id, // Send back to request Node
|
||||
.transfer_id = register_list_response_transfer_id, |
||||
.payload_size = uavcan_register_List_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_, //See prev TODO
|
||||
.payload = &response_payload_buffer, |
||||
}; |
||||
|
||||
int32_t result = uavcan_register_List_Response_1_0_serialize_(&response_msg, &response_payload_buffer, |
||||
&response.payload_size); |
||||
|
||||
if (result == 0) { |
||||
// set the data ready in the buffer and chop if needed
|
||||
++register_list_response_transfer_id; // The transfer-ID shall be incremented after every transmission on this subject.
|
||||
result = canardTxPush(ins, &response); |
||||
} |
||||
|
||||
if (result < 0) { |
||||
// An error has occurred: either an argument is invalid or we've ran out of memory.
|
||||
// It is possible to statically prove that an out-of-memory will never occur for a given application if the
|
||||
// heap is sized correctly; for background, refer to the Robson's Proof and the documentation for O1Heap.
|
||||
return -UAVCAN_REGISTER_ERROR_SERIALIZATION; |
||||
} |
||||
|
||||
return 1; |
||||
} |
@ -1,49 +0,0 @@
@@ -1,49 +0,0 @@
|
||||
|
||||
#ifndef UAVCAN_REGISTER_INTERFACE_H_ |
||||
#define UAVCAN_REGISTER_INTERFACE_H_ |
||||
|
||||
#include <canard.h> |
||||
|
||||
#define NUNAVUT_ASSERT |
||||
#include "uavcan/node/GetInfo_1_0.h" |
||||
#include "uavcan/_register/Value_1_0.h" |
||||
|
||||
#include "time.h" |
||||
|
||||
//No of pre allocated register entries
|
||||
#ifndef UAVCAN_REGISTER_COUNT |
||||
# define UAVCAN_REGISTER_COUNT 5 |
||||
#endif |
||||
|
||||
#define UAVCAN_REGISTER_ERROR_SERIALIZATION 1 |
||||
#define UAVCAN_REGISTER_ERROR_OUT_OF_MEMORY 2 |
||||
|
||||
typedef int32_t (*register_access_set_callback)(uavcan_register_Value_1_0 *value); |
||||
typedef uavcan_register_Value_1_0(*register_access_get_callback)(void); |
||||
|
||||
typedef struct { |
||||
/// uavcan.register.Name.1.0 name
|
||||
const char *name; |
||||
register_access_set_callback cb_set; |
||||
register_access_get_callback cb_get; |
||||
} uavcan_register_interface_entry; |
||||
|
||||
|
||||
int32_t uavcan_register_interface_init(CanardInstance *ins, uavcan_node_GetInfo_Response_1_0 *info); |
||||
|
||||
int32_t uavcan_register_interface_add_entry(const char *name, register_access_set_callback cb_set, |
||||
register_access_get_callback cb_get); |
||||
|
||||
// Handler for all PortID registration related messages
|
||||
int32_t uavcan_register_interface_process(CanardInstance *ins, CanardTransfer *transfer); |
||||
|
||||
// Handler for node.GetInfo which yields a response
|
||||
int32_t uavcan_register_interface_get_info_response(CanardInstance *ins, CanardTransfer *request); |
||||
|
||||
// Handler for register access interface
|
||||
int32_t uavcan_register_interface_access_response(CanardInstance *ins, CanardTransfer *request); |
||||
|
||||
// Handler for register list interface
|
||||
int32_t uavcan_register_interface_list_response(CanardInstance *ins, CanardTransfer *request); |
||||
|
||||
#endif //UAVCAN_REGISTER_INTERFACE_H_
|
@ -1,6 +0,0 @@
@@ -1,6 +0,0 @@
|
||||
#ifndef MAVCAN_TIME_H_ |
||||
#define MAVCAN_TIME_H_ |
||||
|
||||
uint64_t getMonotonicTimestampUSec(void); |
||||
|
||||
#endif //MAVCAN_TIME_H_
|
@ -1,498 +0,0 @@
@@ -1,498 +0,0 @@
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
|
||||
// documentation files (the "Software"), to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
|
||||
// and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in all copies or substantial portions
|
||||
// of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
|
||||
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
|
||||
// OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||||
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
//
|
||||
// Copyright (c) 2020 Pavel Kirienko
|
||||
// Authors: Pavel Kirienko <pavel.kirienko@zubax.com>
|
||||
|
||||
#include "o1heap.h" |
||||
#include <assert.h> |
||||
|
||||
// ---------------------------------------- BUILD CONFIGURATION OPTIONS ----------------------------------------
|
||||
|
||||
/// The assertion macro defaults to the standard assert().
|
||||
/// It can be overridden to manually suppress assertion checks or use a different error handling policy.
|
||||
#ifndef O1HEAP_ASSERT |
||||
// Intentional violation of MISRA: the assertion check macro cannot be replaced with a function definition.
|
||||
# define O1HEAP_ASSERT(x) assert(x) // NOSONAR
|
||||
#endif |
||||
|
||||
/// Branch probability annotations are used to improve the worst case execution time (WCET). They are entirely optional.
|
||||
/// A stock implementation is provided for some well-known compilers; for other compilers it defaults to nothing.
|
||||
/// If you are using a different compiler, consider overriding this value.
|
||||
#ifndef O1HEAP_LIKELY |
||||
# if defined(__GNUC__) || defined(__clang__) || defined(__CC_ARM) |
||||
// Intentional violation of MISRA: branch hinting macro cannot be replaced with a function definition.
|
||||
# define O1HEAP_LIKELY(x) __builtin_expect((x), 1) // NOSONAR
|
||||
# else |
||||
# define O1HEAP_LIKELY(x) x |
||||
# endif |
||||
#endif |
||||
|
||||
/// This option is used for testing only. Do not use in production.
|
||||
#if defined(O1HEAP_EXPOSE_INTERNALS) && O1HEAP_EXPOSE_INTERNALS |
||||
# define O1HEAP_PRIVATE |
||||
#else |
||||
# define O1HEAP_PRIVATE static inline |
||||
#endif |
||||
|
||||
// ---------------------------------------- INTERNAL DEFINITIONS ----------------------------------------
|
||||
|
||||
#if !defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) |
||||
# error "Unsupported language: ISO C99 or a newer version is required." |
||||
#endif |
||||
|
||||
#if __STDC_VERSION__ < 201112L |
||||
// Intentional violation of MISRA: static assertion macro cannot be replaced with a function definition.
|
||||
# define static_assert(x, ...) typedef char _static_assert_gl(_static_assertion_, __LINE__)[(x) ? 1 : -1] // NOSONAR
|
||||
# define _static_assert_gl(a, b) _static_assert_gl_impl(a, b) // NOSONAR
|
||||
// Intentional violation of MISRA: the paste operator ## cannot be avoided in this context.
|
||||
# define _static_assert_gl_impl(a, b) a##b // NOSONAR
|
||||
#endif |
||||
|
||||
/// The overhead is at most O1HEAP_ALIGNMENT bytes large,
|
||||
/// then follows the user data which shall keep the next fragment aligned.
|
||||
#define FRAGMENT_SIZE_MIN (O1HEAP_ALIGNMENT * 2U) |
||||
|
||||
/// This is risky, handle with care: if the allocation amount plus per-fragment overhead exceeds 2**(b-1),
|
||||
/// where b is the pointer bit width, then ceil(log2(amount)) yields b; then 2**b causes an integer overflow.
|
||||
/// To avoid this, we put a hard limit on fragment size (which is amount + per-fragment overhead): 2**(b-1)
|
||||
#define FRAGMENT_SIZE_MAX ((SIZE_MAX >> 1U) + 1U) |
||||
|
||||
/// Normally we should subtract log2(FRAGMENT_SIZE_MIN) but log2 is bulky to compute using the preprocessor only.
|
||||
/// We will certainly end up with unused bins this way, but it is cheap to ignore.
|
||||
#define NUM_BINS_MAX (sizeof(size_t) * 8U) |
||||
|
||||
static_assert((O1HEAP_ALIGNMENT & (O1HEAP_ALIGNMENT - 1U)) == 0U, "Not a power of 2"); |
||||
static_assert((FRAGMENT_SIZE_MIN & (FRAGMENT_SIZE_MIN - 1U)) == 0U, "Not a power of 2"); |
||||
static_assert((FRAGMENT_SIZE_MAX & (FRAGMENT_SIZE_MAX - 1U)) == 0U, "Not a power of 2"); |
||||
|
||||
typedef struct Fragment Fragment; |
||||
|
||||
typedef struct FragmentHeader { |
||||
Fragment *next; |
||||
Fragment *prev; |
||||
size_t size; |
||||
bool used; |
||||
} FragmentHeader; |
||||
static_assert(sizeof(FragmentHeader) <= O1HEAP_ALIGNMENT, "Memory layout error"); |
||||
|
||||
struct Fragment { |
||||
FragmentHeader header; |
||||
// Everything past the header may spill over into the allocatable space. The header survives across alloc/free.
|
||||
Fragment *next_free; // Next free fragment in the bin; NULL in the last one.
|
||||
Fragment *prev_free; // Same but points back; NULL in the first one.
|
||||
}; |
||||
static_assert(sizeof(Fragment) <= FRAGMENT_SIZE_MIN, "Memory layout error"); |
||||
|
||||
struct O1HeapInstance { |
||||
Fragment *bins[NUM_BINS_MAX]; ///< Smallest fragments are in the bin at index 0.
|
||||
size_t nonempty_bin_mask; ///< Bit 1 represents a non-empty bin; bin at index 0 is for the smallest fragments.
|
||||
|
||||
O1HeapHook critical_section_enter; |
||||
O1HeapHook critical_section_leave; |
||||
|
||||
O1HeapDiagnostics diagnostics; |
||||
}; |
||||
|
||||
/// The amount of space allocated for the heap instance.
|
||||
/// Its size is padded up to O1HEAP_ALIGNMENT to ensure correct alignment of the allocation arena that follows.
|
||||
#define INSTANCE_SIZE_PADDED ((sizeof(O1HeapInstance) + O1HEAP_ALIGNMENT - 1U) & ~(O1HEAP_ALIGNMENT - 1U)) |
||||
|
||||
static_assert(INSTANCE_SIZE_PADDED >= sizeof(O1HeapInstance), "Invalid instance footprint computation"); |
||||
static_assert((INSTANCE_SIZE_PADDED % O1HEAP_ALIGNMENT) == 0U, "Invalid instance footprint computation"); |
||||
|
||||
/// True if the argument is an integer power of two or zero.
|
||||
O1HEAP_PRIVATE bool isPowerOf2(const size_t x); |
||||
O1HEAP_PRIVATE bool isPowerOf2(const size_t x) |
||||
{ |
||||
return (x & (x - 1U)) == 0U; |
||||
} |
||||
|
||||
/// Special case: if the argument is zero, returns zero.
|
||||
O1HEAP_PRIVATE uint8_t log2Floor(const size_t x); |
||||
O1HEAP_PRIVATE uint8_t log2Floor(const size_t x) |
||||
{ |
||||
size_t tmp = x; |
||||
uint8_t y = 0; |
||||
|
||||
// This is currently the only exception to the statement "routines contain neither loops nor recursion".
|
||||
// It is unclear if there is a better way to compute the binary logarithm than this.
|
||||
while (tmp > 1U) { |
||||
tmp >>= 1U; |
||||
y++; |
||||
} |
||||
|
||||
return y; |
||||
} |
||||
|
||||
/// Special case: if the argument is zero, returns zero.
|
||||
O1HEAP_PRIVATE uint8_t log2Ceil(const size_t x); |
||||
O1HEAP_PRIVATE uint8_t log2Ceil(const size_t x) |
||||
{ |
||||
return (uint8_t)(log2Floor(x) + (isPowerOf2(x) ? 0U : 1U)); |
||||
} |
||||
|
||||
/// Raise 2 into the specified power.
|
||||
/// You might be tempted to do something like (1U << power). WRONG! We humans are prone to forgetting things.
|
||||
/// If you forget to cast your 1U to size_t or ULL, you may end up with undefined behavior.
|
||||
O1HEAP_PRIVATE size_t pow2(const uint8_t power); |
||||
O1HEAP_PRIVATE size_t pow2(const uint8_t power) |
||||
{ |
||||
return ((size_t) 1U) << power; |
||||
} |
||||
|
||||
O1HEAP_PRIVATE void invoke(const O1HeapHook hook); |
||||
O1HEAP_PRIVATE void invoke(const O1HeapHook hook) |
||||
{ |
||||
if (hook != NULL) { |
||||
hook(); |
||||
} |
||||
} |
||||
|
||||
/// Links two fragments so that their next/prev pointers point to each other; left goes before right.
|
||||
O1HEAP_PRIVATE void interlink(Fragment *const left, Fragment *const right); |
||||
O1HEAP_PRIVATE void interlink(Fragment *const left, Fragment *const right) |
||||
{ |
||||
if (O1HEAP_LIKELY(left != NULL)) { |
||||
left->header.next = right; |
||||
} |
||||
|
||||
if (O1HEAP_LIKELY(right != NULL)) { |
||||
right->header.prev = left; |
||||
} |
||||
} |
||||
|
||||
/// Adds a new block into the appropriate bin and updates the lookup mask.
|
||||
O1HEAP_PRIVATE void rebin(O1HeapInstance *const handle, Fragment *const fragment); |
||||
O1HEAP_PRIVATE void rebin(O1HeapInstance *const handle, Fragment *const fragment) |
||||
{ |
||||
O1HEAP_ASSERT(handle != NULL); |
||||
O1HEAP_ASSERT(fragment != NULL); |
||||
O1HEAP_ASSERT(fragment->header.size >= FRAGMENT_SIZE_MIN); |
||||
O1HEAP_ASSERT((fragment->header.size % FRAGMENT_SIZE_MIN) == 0U); |
||||
const uint8_t idx = log2Floor(fragment->header.size / FRAGMENT_SIZE_MIN); // Round DOWN when inserting.
|
||||
O1HEAP_ASSERT(idx < NUM_BINS_MAX); |
||||
// Add the new fragment to the beginning of the bin list.
|
||||
// I.e., each allocation will be returning the least-recently-used fragment -- good for caching.
|
||||
fragment->next_free = handle->bins[idx]; |
||||
fragment->prev_free = NULL; |
||||
|
||||
if (O1HEAP_LIKELY(handle->bins[idx] != NULL)) { |
||||
handle->bins[idx]->prev_free = fragment; |
||||
} |
||||
|
||||
handle->bins[idx] = fragment; |
||||
handle->nonempty_bin_mask |= pow2(idx); |
||||
} |
||||
|
||||
/// Removes the specified block from its bin.
|
||||
O1HEAP_PRIVATE void unbin(O1HeapInstance *const handle, const Fragment *const fragment); |
||||
O1HEAP_PRIVATE void unbin(O1HeapInstance *const handle, const Fragment *const fragment) |
||||
{ |
||||
O1HEAP_ASSERT(handle != NULL); |
||||
O1HEAP_ASSERT(fragment != NULL); |
||||
O1HEAP_ASSERT(fragment->header.size >= FRAGMENT_SIZE_MIN); |
||||
O1HEAP_ASSERT((fragment->header.size % FRAGMENT_SIZE_MIN) == 0U); |
||||
const uint8_t idx = log2Floor(fragment->header.size / FRAGMENT_SIZE_MIN); // Round DOWN when removing.
|
||||
O1HEAP_ASSERT(idx < NUM_BINS_MAX); |
||||
|
||||
// Remove the bin from the free fragment list.
|
||||
if (O1HEAP_LIKELY(fragment->next_free != NULL)) { |
||||
fragment->next_free->prev_free = fragment->prev_free; |
||||
} |
||||
|
||||
if (O1HEAP_LIKELY(fragment->prev_free != NULL)) { |
||||
fragment->prev_free->next_free = fragment->next_free; |
||||
} |
||||
|
||||
// Update the bin header.
|
||||
if (O1HEAP_LIKELY(handle->bins[idx] == fragment)) { |
||||
O1HEAP_ASSERT(fragment->prev_free == NULL); |
||||
handle->bins[idx] = fragment->next_free; |
||||
|
||||
if (O1HEAP_LIKELY(handle->bins[idx] == NULL)) { |
||||
handle->nonempty_bin_mask &= ~pow2(idx); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// ---------------------------------------- PUBLIC API IMPLEMENTATION ----------------------------------------
|
||||
|
||||
O1HeapInstance *o1heapInit(void *const base, |
||||
const size_t size, |
||||
const O1HeapHook critical_section_enter, |
||||
const O1HeapHook critical_section_leave) |
||||
{ |
||||
O1HeapInstance *out = NULL; |
||||
|
||||
if ((base != NULL) && ((((size_t) base) % O1HEAP_ALIGNMENT) == 0U) && |
||||
(size >= (INSTANCE_SIZE_PADDED + FRAGMENT_SIZE_MIN))) { |
||||
// Allocate the core heap metadata structure in the beginning of the arena.
|
||||
O1HEAP_ASSERT(((size_t) base) % sizeof(O1HeapInstance *) == 0U); |
||||
out = (O1HeapInstance *) base; |
||||
out->nonempty_bin_mask = 0U; |
||||
out->critical_section_enter = critical_section_enter; |
||||
out->critical_section_leave = critical_section_leave; |
||||
|
||||
for (size_t i = 0; i < NUM_BINS_MAX; i++) { |
||||
out->bins[i] = NULL; |
||||
} |
||||
|
||||
// Limit and align the capacity.
|
||||
size_t capacity = size - INSTANCE_SIZE_PADDED; |
||||
|
||||
if (capacity > FRAGMENT_SIZE_MAX) { |
||||
capacity = FRAGMENT_SIZE_MAX; |
||||
} |
||||
|
||||
while ((capacity % FRAGMENT_SIZE_MIN) != 0) { |
||||
O1HEAP_ASSERT(capacity > 0U); |
||||
capacity--; |
||||
} |
||||
|
||||
O1HEAP_ASSERT((capacity % FRAGMENT_SIZE_MIN) == 0); |
||||
O1HEAP_ASSERT((capacity >= FRAGMENT_SIZE_MIN) && (capacity <= FRAGMENT_SIZE_MAX)); |
||||
|
||||
// Initialize the root fragment.
|
||||
Fragment *const frag = (Fragment *)(void *)(((uint8_t *) base) + INSTANCE_SIZE_PADDED); |
||||
O1HEAP_ASSERT((((size_t) frag) % O1HEAP_ALIGNMENT) == 0U); |
||||
frag->header.next = NULL; |
||||
frag->header.prev = NULL; |
||||
frag->header.size = capacity; |
||||
frag->header.used = false; |
||||
frag->next_free = NULL; |
||||
frag->prev_free = NULL; |
||||
rebin(out, frag); |
||||
O1HEAP_ASSERT(out->nonempty_bin_mask != 0U); |
||||
|
||||
// Initialize the diagnostics.
|
||||
out->diagnostics.capacity = capacity; |
||||
out->diagnostics.allocated = 0U; |
||||
out->diagnostics.peak_allocated = 0U; |
||||
out->diagnostics.peak_request_size = 0U; |
||||
out->diagnostics.oom_count = 0U; |
||||
} |
||||
|
||||
return out; |
||||
} |
||||
|
||||
void *o1heapAllocate(O1HeapInstance *const handle, const size_t amount) |
||||
{ |
||||
O1HEAP_ASSERT(handle != NULL); |
||||
O1HEAP_ASSERT(handle->diagnostics.capacity <= FRAGMENT_SIZE_MAX); |
||||
void *out = NULL; |
||||
|
||||
// If the amount approaches approx. SIZE_MAX/2, an undetected integer overflow may occur.
|
||||
// To avoid that, we do not attempt allocation if the amount exceeds the hard limit.
|
||||
// We perform multiple redundant checks to account for a possible unaccounted overflow.
|
||||
if (O1HEAP_LIKELY((amount > 0U) && (amount <= (handle->diagnostics.capacity - O1HEAP_ALIGNMENT)))) { |
||||
// Add the header size and align the allocation size to the power of 2.
|
||||
// See "Timing-Predictable Memory Allocation In Hard Real-Time Systems", Herter, page 27.
|
||||
const size_t fragment_size = pow2(log2Ceil(amount + O1HEAP_ALIGNMENT)); |
||||
O1HEAP_ASSERT(fragment_size <= FRAGMENT_SIZE_MAX); |
||||
O1HEAP_ASSERT(fragment_size >= FRAGMENT_SIZE_MIN); |
||||
O1HEAP_ASSERT(fragment_size >= amount + O1HEAP_ALIGNMENT); |
||||
O1HEAP_ASSERT(isPowerOf2(fragment_size)); |
||||
|
||||
const uint8_t optimal_bin_index = log2Ceil(fragment_size / FRAGMENT_SIZE_MIN); // Use CEIL when fetching.
|
||||
O1HEAP_ASSERT(optimal_bin_index < NUM_BINS_MAX); |
||||
const size_t candidate_bin_mask = ~(pow2(optimal_bin_index) - 1U); |
||||
|
||||
invoke(handle->critical_section_enter); |
||||
|
||||
// Find the smallest non-empty bin we can use.
|
||||
const size_t suitable_bins = handle->nonempty_bin_mask & candidate_bin_mask; |
||||
const size_t smallest_bin_mask = suitable_bins & ~(suitable_bins - 1U); // Clear all bits but the lowest.
|
||||
|
||||
if (O1HEAP_LIKELY(smallest_bin_mask != 0)) { |
||||
O1HEAP_ASSERT(isPowerOf2(smallest_bin_mask)); |
||||
const uint8_t bin_index = log2Floor(smallest_bin_mask); |
||||
O1HEAP_ASSERT(bin_index >= optimal_bin_index); |
||||
O1HEAP_ASSERT(bin_index < NUM_BINS_MAX); |
||||
|
||||
// The bin we found shall not be empty, otherwise it's a state divergence (memory corruption?).
|
||||
Fragment *const frag = handle->bins[bin_index]; |
||||
O1HEAP_ASSERT(frag != NULL); |
||||
O1HEAP_ASSERT(frag->header.size >= fragment_size); |
||||
O1HEAP_ASSERT((frag->header.size % FRAGMENT_SIZE_MIN) == 0U); |
||||
O1HEAP_ASSERT(!frag->header.used); |
||||
unbin(handle, frag); |
||||
|
||||
// Split the fragment if it is too large.
|
||||
const size_t leftover = frag->header.size - fragment_size; |
||||
frag->header.size = fragment_size; |
||||
O1HEAP_ASSERT(leftover < handle->diagnostics.capacity); // Overflow check.
|
||||
O1HEAP_ASSERT(leftover % FRAGMENT_SIZE_MIN == 0U); // Alignment check.
|
||||
|
||||
if (O1HEAP_LIKELY(leftover >= FRAGMENT_SIZE_MIN)) { |
||||
Fragment *const new_frag = (Fragment *)(void *)(((uint8_t *) frag) + fragment_size); |
||||
O1HEAP_ASSERT(((size_t) new_frag) % O1HEAP_ALIGNMENT == 0U); |
||||
new_frag->header.size = leftover; |
||||
new_frag->header.used = false; |
||||
interlink(new_frag, frag->header.next); |
||||
interlink(frag, new_frag); |
||||
rebin(handle, new_frag); |
||||
} |
||||
|
||||
// Update the diagnostics.
|
||||
O1HEAP_ASSERT((handle->diagnostics.allocated % FRAGMENT_SIZE_MIN) == 0U); |
||||
handle->diagnostics.allocated += fragment_size; |
||||
O1HEAP_ASSERT(handle->diagnostics.allocated <= handle->diagnostics.capacity); |
||||
|
||||
if (O1HEAP_LIKELY(handle->diagnostics.peak_allocated < handle->diagnostics.allocated)) { |
||||
handle->diagnostics.peak_allocated = handle->diagnostics.allocated; |
||||
} |
||||
|
||||
// Finalize the fragment we just allocated.
|
||||
O1HEAP_ASSERT(frag->header.size >= amount + O1HEAP_ALIGNMENT); |
||||
frag->header.used = true; |
||||
|
||||
out = ((uint8_t *) frag) + O1HEAP_ALIGNMENT; |
||||
} |
||||
|
||||
} else { |
||||
invoke(handle->critical_section_enter); |
||||
} |
||||
|
||||
// Update the diagnostics.
|
||||
if (O1HEAP_LIKELY(handle->diagnostics.peak_request_size < amount)) { |
||||
handle->diagnostics.peak_request_size = amount; |
||||
} |
||||
|
||||
if (O1HEAP_LIKELY((out == NULL) && (amount > 0U))) { |
||||
handle->diagnostics.oom_count++; |
||||
} |
||||
|
||||
invoke(handle->critical_section_leave); |
||||
return out; |
||||
} |
||||
|
||||
void o1heapFree(O1HeapInstance *const handle, void *const pointer) |
||||
{ |
||||
O1HEAP_ASSERT(handle != NULL); |
||||
O1HEAP_ASSERT(handle->diagnostics.capacity <= FRAGMENT_SIZE_MAX); |
||||
|
||||
if (O1HEAP_LIKELY(pointer != NULL)) { // NULL pointer is a no-op.
|
||||
Fragment *const frag = (Fragment *)(void *)(((uint8_t *) pointer) - O1HEAP_ALIGNMENT); |
||||
|
||||
// Check for heap corruption in debug builds.
|
||||
O1HEAP_ASSERT(((size_t) frag) % sizeof(Fragment *) == 0U); |
||||
O1HEAP_ASSERT(((size_t) frag) >= (((size_t) handle) + INSTANCE_SIZE_PADDED)); |
||||
O1HEAP_ASSERT(((size_t) frag) <= |
||||
(((size_t) handle) + INSTANCE_SIZE_PADDED + handle->diagnostics.capacity - FRAGMENT_SIZE_MIN)); |
||||
O1HEAP_ASSERT(frag->header.used); // Catch double-free
|
||||
O1HEAP_ASSERT(((size_t) frag->header.next) % sizeof(Fragment *) == 0U); |
||||
O1HEAP_ASSERT(((size_t) frag->header.prev) % sizeof(Fragment *) == 0U); |
||||
O1HEAP_ASSERT(frag->header.size >= FRAGMENT_SIZE_MIN); |
||||
O1HEAP_ASSERT(frag->header.size <= handle->diagnostics.capacity); |
||||
O1HEAP_ASSERT((frag->header.size % FRAGMENT_SIZE_MIN) == 0U); |
||||
|
||||
invoke(handle->critical_section_enter); |
||||
|
||||
// Even if we're going to drop the fragment later, mark it free anyway to prevent double-free.
|
||||
frag->header.used = false; |
||||
|
||||
// Update the diagnostics. It must be done before merging because it invalidates the fragment size information.
|
||||
O1HEAP_ASSERT(handle->diagnostics.allocated >= frag->header.size); // Heap corruption check.
|
||||
handle->diagnostics.allocated -= frag->header.size; |
||||
|
||||
// Merge with siblings and insert the returned fragment into the appropriate bin and update metadata.
|
||||
Fragment *const prev = frag->header.prev; |
||||
Fragment *const next = frag->header.next; |
||||
const bool join_left = (prev != NULL) && (!prev->header.used); |
||||
const bool join_right = (next != NULL) && (!next->header.used); |
||||
|
||||
if (join_left && join_right) { // [ prev ][ this ][ next ] => [ ------- prev ------- ]
|
||||
unbin(handle, prev); |
||||
unbin(handle, next); |
||||
prev->header.size += frag->header.size + next->header.size; |
||||
frag->header.size = 0; // Invalidate the dropped fragment headers to prevent double-free.
|
||||
next->header.size = 0; |
||||
O1HEAP_ASSERT((prev->header.size % FRAGMENT_SIZE_MIN) == 0U); |
||||
interlink(prev, next->header.next); |
||||
rebin(handle, prev); |
||||
|
||||
} else if (join_left) { // [ prev ][ this ][ next ] => [ --- prev --- ][ next ]
|
||||
unbin(handle, prev); |
||||
prev->header.size += frag->header.size; |
||||
frag->header.size = 0; |
||||
O1HEAP_ASSERT((prev->header.size % FRAGMENT_SIZE_MIN) == 0U); |
||||
interlink(prev, next); |
||||
rebin(handle, prev); |
||||
|
||||
} else if (join_right) { // [ prev ][ this ][ next ] => [ prev ][ --- this --- ]
|
||||
unbin(handle, next); |
||||
frag->header.size += next->header.size; |
||||
next->header.size = 0; |
||||
O1HEAP_ASSERT((frag->header.size % FRAGMENT_SIZE_MIN) == 0U); |
||||
interlink(frag, next->header.next); |
||||
rebin(handle, frag); |
||||
|
||||
} else { |
||||
rebin(handle, frag); |
||||
} |
||||
|
||||
invoke(handle->critical_section_leave); |
||||
} |
||||
} |
||||
|
||||
bool o1heapDoInvariantsHold(const O1HeapInstance *const handle) |
||||
{ |
||||
O1HEAP_ASSERT(handle != NULL); |
||||
bool valid = true; |
||||
|
||||
invoke(handle->critical_section_enter); |
||||
|
||||
// Check the bin mask consistency.
|
||||
for (size_t i = 0; i < NUM_BINS_MAX; i++) { // Dear compiler, feel free to unroll this loop.
|
||||
const bool mask_bit_set = (handle->nonempty_bin_mask & pow2((uint8_t) i)) != 0U; |
||||
const bool bin_nonempty = handle->bins[i] != NULL; |
||||
valid = valid && (mask_bit_set == bin_nonempty); |
||||
} |
||||
|
||||
// Create a local copy of the diagnostics struct to check later and release the critical section early.
|
||||
const O1HeapDiagnostics diag = handle->diagnostics; |
||||
|
||||
invoke(handle->critical_section_leave); |
||||
|
||||
// Capacity check.
|
||||
valid = valid && (diag.capacity <= FRAGMENT_SIZE_MAX) && (diag.capacity >= FRAGMENT_SIZE_MIN) && |
||||
((diag.capacity % FRAGMENT_SIZE_MIN) == 0U); |
||||
|
||||
// Allocation info check.
|
||||
valid = valid && (diag.allocated <= diag.capacity) && ((diag.allocated % FRAGMENT_SIZE_MIN) == 0U) && |
||||
(diag.peak_allocated <= diag.capacity) && (diag.peak_allocated >= diag.allocated) && |
||||
((diag.peak_allocated % FRAGMENT_SIZE_MIN) == 0U); |
||||
|
||||
// Peak request check
|
||||
valid = valid && ((diag.peak_request_size < diag.capacity) || (diag.oom_count > 0U)); |
||||
|
||||
if (diag.peak_request_size == 0U) { |
||||
valid = valid && (diag.peak_allocated == 0U) && (diag.allocated == 0U) && (diag.oom_count == 0U); |
||||
|
||||
} else { |
||||
valid = valid && // Overflow on summation is possible but safe to ignore.
|
||||
(((diag.peak_request_size + O1HEAP_ALIGNMENT) <= diag.peak_allocated) || (diag.oom_count > 0U)); |
||||
} |
||||
|
||||
return valid; |
||||
} |
||||
|
||||
O1HeapDiagnostics o1heapGetDiagnostics(const O1HeapInstance *const handle) |
||||
{ |
||||
O1HEAP_ASSERT(handle != NULL); |
||||
invoke(handle->critical_section_enter); |
||||
const O1HeapDiagnostics out = handle->diagnostics; |
||||
invoke(handle->critical_section_leave); |
||||
return out; |
||||
} |
@ -1,142 +0,0 @@
@@ -1,142 +0,0 @@
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
|
||||
// documentation files (the "Software"), to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
|
||||
// and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in all copies or substantial portions
|
||||
// of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
|
||||
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
|
||||
// OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||||
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
//
|
||||
// Copyright (c) 2020 Pavel Kirienko
|
||||
// Authors: Pavel Kirienko <pavel.kirienko@zubax.com>
|
||||
//
|
||||
// READ THE DOCUMENTATION IN README.md.
|
||||
|
||||
#ifndef O1HEAP_H_INCLUDED |
||||
#define O1HEAP_H_INCLUDED |
||||
|
||||
#include <stdbool.h> |
||||
#include <stddef.h> |
||||
#include <stdint.h> |
||||
|
||||
#ifdef __cplusplus |
||||
extern "C" { |
||||
#endif |
||||
|
||||
/// The semantic version number of this distribution.
|
||||
#define O1HEAP_VERSION_MAJOR 1 |
||||
|
||||
/// The guaranteed alignment depends on the platform pointer width.
|
||||
#define O1HEAP_ALIGNMENT (sizeof(void*) * 4U) |
||||
|
||||
/// The definition is private, so the user code can only operate on pointers. This is done to enforce encapsulation.
|
||||
typedef struct O1HeapInstance O1HeapInstance; |
||||
|
||||
/// A hook function invoked by the allocator. NULL hooks are silently not invoked (not an error).
|
||||
typedef void (*O1HeapHook)(void); |
||||
|
||||
/// Runtime diagnostic information. This information can be used to facilitate runtime self-testing,
|
||||
/// as required by certain safety-critical development guidelines.
|
||||
/// If assertion checks are not disabled, the library will perform automatic runtime self-diagnostics that trigger
|
||||
/// an assertion failure if a heap corruption is detected.
|
||||
/// Health checks and validation can be done with @ref o1heapDoInvariantsHold().
|
||||
typedef struct { |
||||
/// The total amount of memory available for serving allocation requests (heap size).
|
||||
/// The maximum allocation size is (capacity - O1HEAP_ALIGNMENT).
|
||||
/// This parameter does not include the overhead used up by @ref O1HeapInstance and arena alignment.
|
||||
/// This parameter is constant.
|
||||
size_t capacity; |
||||
|
||||
/// The amount of memory that is currently allocated, including the per-fragment overhead and size alignment.
|
||||
/// For example, if the application requested a fragment of size 1 byte, the value reported here may be 32 bytes.
|
||||
size_t allocated; |
||||
|
||||
/// The maximum value of 'allocated' seen since initialization. This parameter is never decreased.
|
||||
size_t peak_allocated; |
||||
|
||||
/// The largest amount of memory that the allocator has attempted to allocate (perhaps unsuccessfully)
|
||||
/// since initialization (not including the rounding and the allocator's own per-fragment overhead,
|
||||
/// so the total is larger). This parameter is never decreased. The initial value is zero.
|
||||
size_t peak_request_size; |
||||
|
||||
/// The number of times an allocation request could not be completed due to the lack of memory or
|
||||
/// excessive fragmentation. OOM stands for "out of memory". This parameter is never decreased.
|
||||
uint64_t oom_count; |
||||
} O1HeapDiagnostics; |
||||
|
||||
/// The arena base pointer shall be aligned at @ref O1HEAP_ALIGNMENT, otherwise NULL is returned.
|
||||
///
|
||||
/// The total heap capacity cannot exceed approx. (SIZE_MAX/2). If the arena size allows for a larger heap,
|
||||
/// the excess will be silently truncated away (no error). This is not a realistic use case because a typical
|
||||
/// application is unlikely to be able to dedicate that much of the address space for the heap.
|
||||
///
|
||||
/// The critical section enter/leave callbacks will be invoked when the allocator performs an atomic transaction.
|
||||
/// There is at most one atomic transaction per allocation/deallocation.
|
||||
/// Either or both of the callbacks may be NULL if locking is not needed (i.e., the heap is not shared).
|
||||
/// It is guaranteed that a critical section will never be entered recursively.
|
||||
/// It is guaranteed that 'enter' is invoked the same number of times as 'leave', unless either of them are NULL.
|
||||
/// It is guaranteed that 'enter' is invoked before 'leave', unless either of them are NULL.
|
||||
/// The callbacks are never invoked from the initialization function itself.
|
||||
///
|
||||
/// The function initializes a new heap instance allocated in the provided arena, taking some of its space for its
|
||||
/// own needs (normally about 40..600 bytes depending on the architecture, but this parameter is not characterized).
|
||||
/// A pointer to the newly initialized instance is returned.
|
||||
///
|
||||
/// If the provided space is insufficient, NULL is returned.
|
||||
///
|
||||
/// An initialized instance does not hold any resources. Therefore, if the instance is no longer needed,
|
||||
/// it can be discarded without any de-initialization procedures.
|
||||
///
|
||||
/// The time complexity is unspecified.
|
||||
O1HeapInstance *o1heapInit(void *const base, |
||||
const size_t size, |
||||
const O1HeapHook critical_section_enter, |
||||
const O1HeapHook critical_section_leave); |
||||
|
||||
/// The semantics follows malloc() with additional guarantees the full list of which is provided below.
|
||||
///
|
||||
/// If the allocation request is served successfully, a pointer to the newly allocated memory fragment is returned.
|
||||
/// The returned pointer is guaranteed to be aligned at @ref O1HEAP_ALIGNMENT.
|
||||
///
|
||||
/// If the allocation request cannot be served due to the lack of memory or its excessive fragmentation,
|
||||
/// a NULL pointer is returned.
|
||||
///
|
||||
/// The function is executed in constant time (unless the critical section management hooks are used and are not
|
||||
/// constant-time). The allocated memory is NOT zero-filled (because zero-filling is a variable-complexity operation).
|
||||
///
|
||||
/// The function may invoke critical_section_enter and critical_section_leave at most once each (NULL hooks ignored).
|
||||
void *o1heapAllocate(O1HeapInstance *const handle, const size_t amount); |
||||
|
||||
/// The semantics follows free() with additional guarantees the full list of which is provided below.
|
||||
///
|
||||
/// If the pointer does not point to a previously allocated block and is not NULL, the behavior is undefined.
|
||||
/// Builds where assertion checks are enabled may trigger an assertion failure for some invalid inputs.
|
||||
///
|
||||
/// The function is executed in constant time (unless the critical section management hooks are used and are not
|
||||
/// constant-time).
|
||||
///
|
||||
/// The function may invoke critical_section_enter and critical_section_leave at most once each (NULL hooks ignored).
|
||||
void o1heapFree(O1HeapInstance *const handle, void *const pointer); |
||||
|
||||
/// Performs a basic sanity check on the heap.
|
||||
/// This function can be used as a weak but fast method of heap corruption detection.
|
||||
/// It invokes critical_section_enter once (unless NULL) and then critical_section_leave once (unless NULL).
|
||||
/// If the handle pointer is NULL, the behavior is undefined.
|
||||
/// The time complexity is constant.
|
||||
/// The return value is truth if the heap looks valid, falsity otherwise.
|
||||
bool o1heapDoInvariantsHold(const O1HeapInstance *const handle); |
||||
|
||||
/// Samples and returns a copy of the diagnostic information, see @ref O1HeapDiagnostics.
|
||||
/// This function merely copies the structure from an internal storage, so it is fast to return.
|
||||
/// It invokes critical_section_enter once (unless NULL) and then critical_section_leave once (unless NULL).
|
||||
/// If the handle pointer is NULL, the behavior is undefined.
|
||||
O1HeapDiagnostics o1heapGetDiagnostics(const O1HeapInstance *const handle); |
||||
|
||||
#ifdef __cplusplus |
||||
} |
||||
#endif |
||||
#endif // O1HEAP_H_INCLUDED
|
@ -1 +0,0 @@
@@ -1 +0,0 @@
|
||||
Subproject commit 0a773b93ce5c94e1d2791b180058cb9897fab7e1 |
@ -1,172 +0,0 @@
@@ -1,172 +0,0 @@
|
||||
#include "socketcan.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <net/if.h> |
||||
#include <sys/ioctl.h> |
||||
#include <string.h> |
||||
|
||||
int16_t socketcanOpen(CanardSocketInstance *ins, const char *const can_iface_name, const bool can_fd) |
||||
{ |
||||
struct sockaddr_can addr; |
||||
struct ifreq ifr; |
||||
|
||||
ins->can_fd = can_fd; |
||||
|
||||
/* open socket */ |
||||
if ((ins->s = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0) { |
||||
perror("socket"); |
||||
return -1; |
||||
} |
||||
|
||||
strncpy(ifr.ifr_name, can_iface_name, IFNAMSIZ - 1); |
||||
ifr.ifr_name[IFNAMSIZ - 1] = '\0'; |
||||
ifr.ifr_ifindex = if_nametoindex(ifr.ifr_name); |
||||
|
||||
if (!ifr.ifr_ifindex) { |
||||
perror("if_nametoindex"); |
||||
return -1; |
||||
} |
||||
|
||||
memset(&addr, 0, sizeof(addr)); |
||||
addr.can_family = AF_CAN; |
||||
addr.can_ifindex = ifr.ifr_ifindex; |
||||
|
||||
const int on = 1; |
||||
/* RX Timestamping */ |
||||
|
||||
if (setsockopt(ins->s, SOL_SOCKET, SO_TIMESTAMP, &on, sizeof(on)) < 0) { |
||||
perror("SO_TIMESTAMP is disabled"); |
||||
return -1; |
||||
} |
||||
|
||||
/* NuttX Feature: Enable TX deadline when sending CAN frames
|
||||
* When a deadline occurs the driver will remove the CAN frame |
||||
*/ |
||||
|
||||
if (setsockopt(ins->s, SOL_CAN_RAW, CAN_RAW_TX_DEADLINE, &on, sizeof(on)) < 0) { |
||||
perror("CAN_RAW_TX_DEADLINE is disabled"); |
||||
return -1; |
||||
} |
||||
|
||||
if (can_fd) { |
||||
if (setsockopt(ins->s, SOL_CAN_RAW, CAN_RAW_FD_FRAMES, &on, sizeof(on)) < 0) { |
||||
perror("no CAN FD support"); |
||||
return -1; |
||||
} |
||||
} |
||||
|
||||
if (bind(ins->s, (struct sockaddr *)&addr, sizeof(addr)) < 0) { |
||||
perror("bind"); |
||||
return -1; |
||||
} |
||||
|
||||
// Setup TX msg
|
||||
ins->send_iov.iov_base = &ins->send_frame; |
||||
|
||||
if (ins->can_fd) { |
||||
ins->send_iov.iov_len = sizeof(struct canfd_frame); |
||||
|
||||
} else { |
||||
ins->send_iov.iov_len = sizeof(struct can_frame); |
||||
} |
||||
|
||||
memset(&ins->send_control, 0x00, sizeof(ins->send_control)); |
||||
|
||||
ins->send_msg.msg_iov = &ins->send_iov; |
||||
ins->send_msg.msg_iovlen = 1; |
||||
ins->send_msg.msg_control = &ins->send_control; |
||||
ins->send_msg.msg_controllen = sizeof(ins->send_control); |
||||
|
||||
ins->send_cmsg = CMSG_FIRSTHDR(&ins->send_msg); |
||||
ins->send_cmsg->cmsg_level = SOL_CAN_RAW; |
||||
ins->send_cmsg->cmsg_type = CAN_RAW_TX_DEADLINE; |
||||
ins->send_cmsg->cmsg_len = sizeof(struct timeval); |
||||
ins->send_tv = (struct timeval *)CMSG_DATA(&ins->send_cmsg); |
||||
|
||||
// Setup RX msg
|
||||
ins->recv_iov.iov_base = &ins->recv_frame; |
||||
|
||||
if (can_fd) { |
||||
ins->recv_iov.iov_len = sizeof(struct canfd_frame); |
||||
|
||||
} else { |
||||
ins->recv_iov.iov_len = sizeof(struct can_frame); |
||||
} |
||||
|
||||
memset(&ins->recv_control, 0x00, sizeof(ins->recv_control)); |
||||
|
||||
ins->recv_msg.msg_iov = &ins->recv_iov; |
||||
ins->recv_msg.msg_iovlen = 1; |
||||
ins->recv_msg.msg_control = &ins->recv_control; |
||||
ins->recv_msg.msg_controllen = sizeof(ins->recv_control); |
||||
ins->recv_cmsg = CMSG_FIRSTHDR(&ins->recv_msg); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int16_t socketcanTransmit(CanardSocketInstance *ins, const CanardFrame *txf) |
||||
{ |
||||
/* Copy CanardFrame to can_frame/canfd_frame */ |
||||
|
||||
if (ins->can_fd) { |
||||
ins->send_frame.can_id = txf->extended_can_id; |
||||
ins->send_frame.can_id |= CAN_EFF_FLAG; |
||||
ins->send_frame.len = txf->payload_size; |
||||
memcpy(&ins->send_frame.data, txf->payload, txf->payload_size); |
||||
|
||||
} else { |
||||
struct can_frame *frame = (struct can_frame *)&ins->send_frame; |
||||
frame->can_id = txf->extended_can_id; |
||||
frame->can_id |= CAN_EFF_FLAG; |
||||
frame->can_dlc = txf->payload_size; |
||||
memcpy(&frame->data, txf->payload, txf->payload_size); |
||||
} |
||||
|
||||
/* Set CAN_RAW_TX_DEADLINE timestamp */ |
||||
|
||||
ins->send_tv->tv_usec = txf->timestamp_usec % 1000000ULL; |
||||
ins->send_tv->tv_sec = (txf->timestamp_usec - ins->send_tv->tv_usec) / 1000000ULL; |
||||
|
||||
return sendmsg(ins->s, &ins->send_msg, 0); |
||||
} |
||||
|
||||
int16_t socketcanReceive(CanardSocketInstance *ins, CanardFrame *rxf) |
||||
{ |
||||
int32_t result = recvmsg(ins->s, &ins->recv_msg, 0); |
||||
|
||||
if (result < 0) { |
||||
return result; |
||||
} |
||||
|
||||
/* Copy CAN frame to CanardFrame */ |
||||
|
||||
if (ins->can_fd) { |
||||
struct canfd_frame *recv_frame = (struct canfd_frame *)&ins->recv_frame; |
||||
rxf->extended_can_id = recv_frame->can_id & CAN_EFF_MASK; |
||||
rxf->payload_size = recv_frame->len; |
||||
rxf->payload = &recv_frame->data; |
||||
|
||||
} else { |
||||
struct can_frame *recv_frame = (struct can_frame *)&ins->recv_frame; |
||||
rxf->extended_can_id = recv_frame->can_id & CAN_EFF_MASK; |
||||
rxf->payload_size = recv_frame->can_dlc; |
||||
rxf->payload = &recv_frame->data; //FIXME either copy or clearly state the pointer reference
|
||||
} |
||||
|
||||
/* Read SO_TIMESTAMP value */ |
||||
|
||||
if (ins->recv_cmsg->cmsg_level == SOL_SOCKET && ins->recv_cmsg->cmsg_type == SO_TIMESTAMP) { |
||||
struct timeval *tv = (struct timeval *)CMSG_DATA(ins->recv_cmsg); |
||||
rxf->timestamp_usec = tv->tv_sec * 1000000ULL + tv->tv_usec; |
||||
} |
||||
|
||||
return result; |
||||
} |
||||
|
||||
|
||||
/* TODO implement corresponding IOCTL */ |
||||
|
||||
int16_t socketcanConfigureFilter(const fd_t fd, const size_t num_filters, const struct can_filter *filters) |
||||
{ |
||||
return -1; |
||||
} |
@ -1,69 +0,0 @@
@@ -1,69 +0,0 @@
|
||||
|
||||
#ifndef SOCKETCAN_H_INCLUDED |
||||
#define SOCKETCAN_H_INCLUDED |
||||
|
||||
#include <stdbool.h> |
||||
#include <stddef.h> |
||||
#include <stdint.h> |
||||
|
||||
#include <sys/time.h> |
||||
#include <sys/socket.h> |
||||
|
||||
#include <nuttx/can.h> |
||||
#include <netpacket/can.h> |
||||
|
||||
#include <canard.h> |
||||
|
||||
|
||||
#ifdef __cplusplus |
||||
extern "C" { |
||||
#endif |
||||
|
||||
typedef struct CanardSocketInstance CanardSocketInstance; |
||||
typedef int fd_t; |
||||
|
||||
struct CanardSocketInstance { |
||||
fd_t s; |
||||
bool can_fd; |
||||
|
||||
//// Send msg structure
|
||||
struct iovec send_iov; |
||||
struct canfd_frame send_frame; |
||||
struct msghdr send_msg; |
||||
struct cmsghdr *send_cmsg; |
||||
struct timeval *send_tv; /* TX deadline timestamp */ |
||||
uint8_t send_control[sizeof(struct cmsghdr) + sizeof(struct timeval)]; |
||||
|
||||
//// Receive msg structure
|
||||
struct iovec recv_iov; |
||||
struct canfd_frame recv_frame; |
||||
struct msghdr recv_msg; |
||||
struct cmsghdr *recv_cmsg; |
||||
uint8_t recv_control[sizeof(struct cmsghdr) + sizeof(struct timeval)]; |
||||
}; |
||||
|
||||
/// Creates a SocketCAN socket for corresponding iface can_iface_name
|
||||
/// Also sets up the message structures required for socketcanTransmit & socketcanReceive
|
||||
/// can_fd determines to use CAN FD frame when is 1, and classical CAN frame when is 0
|
||||
/// The return value is 0 on succes and -1 on error
|
||||
int16_t socketcanOpen(CanardSocketInstance *ins, const char *const can_iface_name, const bool can_fd); |
||||
|
||||
/// Send a CanardFrame to the CanardSocketInstance socket
|
||||
/// This function is blocking
|
||||
/// The return value is number of bytes transferred, negative value on error.
|
||||
int16_t socketcanTransmit(CanardSocketInstance *ins, const CanardFrame *txf); |
||||
|
||||
/// Receive a CanardFrame from the CanardSocketInstance socket
|
||||
/// This function is blocking
|
||||
/// The return value is number of bytes received, negative value on error.
|
||||
int16_t socketcanReceive(CanardSocketInstance *ins, CanardFrame *rxf); |
||||
|
||||
// TODO implement ioctl for CAN filter
|
||||
int16_t socketcanConfigureFilter(const fd_t fd, const size_t num_filters, const struct can_filter *filters); |
||||
|
||||
|
||||
#ifdef __cplusplus |
||||
} |
||||
#endif |
||||
|
||||
#endif //SOCKETCAN_H_INCLUDED
|
@ -1,108 +0,0 @@
@@ -1,108 +0,0 @@
|
||||
/*
|
||||
* uorb_converter.c |
||||
* |
||||
* Created on: Apr 10, 2020 |
||||
* Author: hovergames |
||||
*/ |
||||
|
||||
#include <inttypes.h> |
||||
#include <string.h> |
||||
|
||||
#include "uorb_converter.h" |
||||
|
||||
|
||||
/****************************************************************************
|
||||
* Private Data |
||||
****************************************************************************/ |
||||
int uorb_sub_fd; |
||||
px4_pollfd_struct_t fds[1]; |
||||
int error_counter; |
||||
CanardInstance *canard_ins; |
||||
int raw_uorb_message_transfer_id; |
||||
int fix_message_transfer_id; |
||||
int aux_message_transfer_id; |
||||
int16_t *gps_raw_uorb_port_id; |
||||
int16_t *gps_fix_port_id; |
||||
int16_t *gps_aux_port_id; |
||||
|
||||
|
||||
void uorbConverterInit(CanardInstance *ins, int16_t *raw_uorb_port_id, int16_t *fix_port_id, int16_t *aux_port_id) |
||||
{ |
||||
canard_ins = ins; |
||||
|
||||
gps_raw_uorb_port_id = raw_uorb_port_id; |
||||
gps_fix_port_id = fix_port_id; |
||||
gps_aux_port_id = aux_port_id; |
||||
|
||||
/* subscribe to the uORB topic */ |
||||
uorb_sub_fd = orb_subscribe(ORB_ID(sensor_gps)); |
||||
|
||||
orb_set_interval(uorb_sub_fd, 200); |
||||
|
||||
/* one could wait for multiple topics with this technique, just using one here */ |
||||
fds[0].fd = uorb_sub_fd; |
||||
fds[0].events = POLLIN; |
||||
|
||||
error_counter = 0; |
||||
raw_uorb_message_transfer_id = 0; |
||||
fix_message_transfer_id = 0; |
||||
aux_message_transfer_id = 0; |
||||
} |
||||
|
||||
void uorbProcessSub(int timeout_msec) |
||||
{ |
||||
/* wait for subscriber update of 1 file descriptor for timeout_msec ms */ |
||||
int poll_ret = px4_poll(fds, 1, timeout_msec); |
||||
|
||||
/* handle the poll result */ |
||||
if (poll_ret == 0) { |
||||
/* this means none of our providers is giving us data */ |
||||
} else if (poll_ret < 0) { |
||||
/* this is seriously bad - should be an emergency */ |
||||
if (error_counter < 10 || error_counter % 50 == 0) { |
||||
/* use a counter to prevent flooding (and slowing us down) */ |
||||
PX4_ERR("ERROR return value from poll(): %d", poll_ret); |
||||
} |
||||
|
||||
error_counter++; |
||||
|
||||
} else { |
||||
if (fds[0].revents & POLLIN) { |
||||
/* obtained data for the first file descriptor */ |
||||
struct sensor_gps_s raw; |
||||
/* copy sensors raw data into local buffer */ |
||||
orb_copy(ORB_ID(sensor_gps), uorb_sub_fd, &raw); |
||||
|
||||
CanardMicrosecond transmission_deadline = getMonotonicTimestampUSec() + (uint64_t)(1000ULL * 100ULL); |
||||
|
||||
// raw uORB sensor_gps message
|
||||
if (*gps_raw_uorb_port_id != -1) { |
||||
|
||||
CanardTransfer transfer = { |
||||
.timestamp_usec = transmission_deadline, // Zero if transmission deadline is not limited.
|
||||
.priority = CanardPriorityNominal, |
||||
.transfer_kind = CanardTransferKindMessage, |
||||
.port_id = *gps_raw_uorb_port_id, // This is the subject-ID.
|
||||
.remote_node_id = CANARD_NODE_ID_UNSET, // Messages cannot be unicast, so use UNSET.
|
||||
.transfer_id = raw_uorb_message_transfer_id, |
||||
.payload_size = sizeof(struct sensor_gps_s), |
||||
.payload = &raw, |
||||
}; |
||||
|
||||
++raw_uorb_message_transfer_id; // The transfer-ID shall be incremented after every transmission on this subject.
|
||||
int32_t result = canardTxPush(canard_ins, &transfer); |
||||
|
||||
if (result < 0) { |
||||
// An error has occurred: either an argument is invalid or we've ran out of memory.
|
||||
// It is possible to statically prove that an out-of-memory will never occur for a given application if the
|
||||
// heap is sized correctly; for background, refer to the Robson's Proof and the documentation for O1Heap.
|
||||
PX4_ERR("canardTxPush error %" PRId32, result); |
||||
} |
||||
} |
||||
|
||||
|
||||
PX4_INFO("Recv from uORB"); |
||||
} |
||||
} |
||||
} |
||||
|
@ -1,34 +0,0 @@
@@ -1,34 +0,0 @@
|
||||
/*
|
||||
* uorb_converter.h |
||||
* |
||||
* Created on: Apr 10, 2020 |
||||
* Author: hovergames |
||||
*/ |
||||
|
||||
#ifndef SRC_DRIVERS_UAVCANNODE_V1_UORB_CONVERTER_H_ |
||||
#define SRC_DRIVERS_UAVCANNODE_V1_UORB_CONVERTER_H_ |
||||
|
||||
|
||||
/* uORB */ |
||||
#include <px4_platform_common/posix.h> |
||||
#include <uORB/uORB.h> |
||||
#include <uORB/topics/sensor_gps.h> |
||||
|
||||
/* canard */ |
||||
#include <canard.h> |
||||
#include <canard_dsdl.h> |
||||
|
||||
/* monotonic timestamp */ |
||||
#include "libcancl/time.h" |
||||
|
||||
|
||||
/****************************************************************************
|
||||
* Pre-processor Definitions |
||||
****************************************************************************/ |
||||
|
||||
void uorbConverterInit(CanardInstance *ins, int16_t *raw_uorb_port_id, int16_t *fix_port_id, int16_t *aux_port_id); |
||||
|
||||
void uorbProcessSub(int timeout_msec); |
||||
|
||||
|
||||
#endif /* SRC_DRIVERS_UAVCANNODE_V1_UORB_CONVERTER_H_ */ |
Loading…
Reference in new issue