|
|
|
@ -1,7 +1,7 @@
@@ -1,7 +1,7 @@
|
|
|
|
|
/****************************************************************************
|
|
|
|
|
* graphics/nxglib/nxglib_splitline.c |
|
|
|
|
* |
|
|
|
|
* Copyright (C) 2011 Gregory Nutt. All rights reserved. |
|
|
|
|
* Copyright (C) 2011-2012 Gregory Nutt. All rights reserved. |
|
|
|
|
* Author: Gregory Nutt <gnutt@nuttx.org> |
|
|
|
|
* |
|
|
|
|
* Redistribution and use in source and binary forms, with or without |
|
|
|
@ -42,6 +42,7 @@
@@ -42,6 +42,7 @@
|
|
|
|
|
#include <string.h> |
|
|
|
|
#include <errno.h> |
|
|
|
|
#include <stdlib.h> |
|
|
|
|
#include <debug.h> |
|
|
|
|
|
|
|
|
|
#include <nuttx/nx/nxglib.h> |
|
|
|
|
|
|
|
|
@ -49,12 +50,16 @@
@@ -49,12 +50,16 @@
|
|
|
|
|
* Pre-Processor Definitions |
|
|
|
|
****************************************************************************/ |
|
|
|
|
|
|
|
|
|
#define SMALL_SIN 1966 /* 1966/65536 = 0.03 */ |
|
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
|
* Private Types |
|
|
|
|
****************************************************************************/ |
|
|
|
|
|
|
|
|
|
struct b16point_s |
|
|
|
|
{ |
|
|
|
|
b16_t x; |
|
|
|
|
b16_t y; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
|
* Private Data |
|
|
|
|
****************************************************************************/ |
|
|
|
@ -67,6 +72,12 @@
@@ -67,6 +72,12 @@
|
|
|
|
|
* Private Functions |
|
|
|
|
****************************************************************************/ |
|
|
|
|
|
|
|
|
|
static b16_t nxgl_interpolate(b16_t x, b16_t dy, b16_t dxdy) |
|
|
|
|
{ |
|
|
|
|
b16_t dx = b16mulb16(dy, dxdy); |
|
|
|
|
return x + dx; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
|
* Public Functions |
|
|
|
|
****************************************************************************/ |
|
|
|
@ -117,15 +128,19 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
@@ -117,15 +128,19 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
|
|
|
|
|
struct nxgl_vector_s line; |
|
|
|
|
nxgl_coord_t iheight; |
|
|
|
|
nxgl_coord_t iwidth; |
|
|
|
|
nxgl_coord_t iy; |
|
|
|
|
nxgl_coord_t triheight; |
|
|
|
|
nxgl_coord_t halfheight; |
|
|
|
|
b16_t adjwidth; |
|
|
|
|
b16_t xoffset; |
|
|
|
|
b16_t halfoffset; |
|
|
|
|
nxgl_coord_t iyoffset; |
|
|
|
|
struct b16point_s quad[4]; |
|
|
|
|
b16_t b16xoffset; |
|
|
|
|
b16_t b16yoffset; |
|
|
|
|
b16_t b16dxdy; |
|
|
|
|
b16_t angle; |
|
|
|
|
b16_t cosangle; |
|
|
|
|
b16_t sinangle; |
|
|
|
|
b16_t b16x; |
|
|
|
|
b16_t b16y; |
|
|
|
|
|
|
|
|
|
gvdbg("vector: (%d,%d)->(%d,%d) linewidth: %d\n", |
|
|
|
|
vector->pt1.x, vector->pt1.y, vector->pt2.x, vector->pt2.y, linewidth); |
|
|
|
|
|
|
|
|
|
/* First, check the linewidth */ |
|
|
|
|
|
|
|
|
@ -153,7 +168,7 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
@@ -153,7 +168,7 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
|
|
|
|
|
line.pt2.x = vector->pt1.x; |
|
|
|
|
line.pt2.y = vector->pt1.y; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
else /* if (vector->pt1.y == vector->pt2.y) */ |
|
|
|
|
{ |
|
|
|
|
/* First degenerate case: The line is horizontal. */ |
|
|
|
|
|
|
|
|
@ -174,6 +189,10 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
@@ -174,6 +189,10 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
|
|
|
|
|
|
|
|
|
|
rect->pt1.y = vector->pt1.y - (linewidth >> 1); |
|
|
|
|
rect->pt2.y = rect->pt1.y + linewidth - 1; |
|
|
|
|
|
|
|
|
|
gvdbg("Horizontal rect: (%d,%d),(%d,%d)\n", |
|
|
|
|
rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y); |
|
|
|
|
|
|
|
|
|
return 2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -188,6 +207,10 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
@@ -188,6 +207,10 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
|
|
|
|
|
|
|
|
|
|
rect->pt1.x = line.pt1.x - (linewidth >> 1); |
|
|
|
|
rect->pt2.x = rect->pt1.x + linewidth - 1; |
|
|
|
|
|
|
|
|
|
gvdbg("Vertical rect: (%d,%d),(%d,%d)\n", |
|
|
|
|
rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y); |
|
|
|
|
|
|
|
|
|
return 2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -207,6 +230,11 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
@@ -207,6 +230,11 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
|
|
|
|
|
traps[1].bot.x1 = itob16(line.pt2.x); |
|
|
|
|
traps[1].bot.x2 = traps[1].bot.x1; |
|
|
|
|
traps[1].bot.y = line.pt2.y; |
|
|
|
|
|
|
|
|
|
gvdbg("Vertical traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n", |
|
|
|
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
|
|
|
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
|
|
|
|
|
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -226,103 +254,260 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
@@ -226,103 +254,260 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
|
|
|
|
|
iwidth = line.pt1.x - line.pt2.x + 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* Triangle height: linewidth * cosA
|
|
|
|
|
* Adjusted width: triheight / sinA |
|
|
|
|
* X offset : linewidth * linewidth / adjusted line width |
|
|
|
|
/* Applying the line width to the line results in a rotated, rectangle.
|
|
|
|
|
* Get the Y offset from an end of the original thin line to a corner of the fat line. |
|
|
|
|
* |
|
|
|
|
* Angle of line: angle = atan2(iheight, iwidth) |
|
|
|
|
* Y offset from line: b16yoffset = linewidth * cos(angle) |
|
|
|
|
* |
|
|
|
|
* For near verical lines, b16yoffset is be nearly zero. For near horizontal |
|
|
|
|
* lines, b16yOffset is be about the same as linewidth. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
angle = b16atan2(itob16(iheight), itob16(iwidth)); |
|
|
|
|
triheight = b16toi(linewidth * b16cos(angle) + b16HALF); |
|
|
|
|
halfheight = (triheight >> 1); |
|
|
|
|
angle = b16atan2(itob16(iheight), itob16(iwidth)); |
|
|
|
|
cosangle = b16cos(angle); |
|
|
|
|
b16yoffset = (linewidth * cosangle + 1) >> 1; |
|
|
|
|
|
|
|
|
|
/* If the sine of the angle is tiny (i.e., the line is nearly horizontal),
|
|
|
|
|
* then we cannot compute the adjusted width. In this case, just use |
|
|
|
|
* the width of the line bounding box. |
|
|
|
|
/* Get the X offset from an end of the original thin line to a corner of the fat line.
|
|
|
|
|
* |
|
|
|
|
* For near vertical lines, b16xoffset is about the same as linewidth. For near |
|
|
|
|
* horizontal lines, b16xoffset is nearly zero. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
sinangle = b16sin(angle); |
|
|
|
|
if (sinangle < SMALL_SIN) |
|
|
|
|
{ |
|
|
|
|
adjwidth = itob16(iwidth); |
|
|
|
|
xoffset = 0; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
adjwidth = b16divb16(itob16(linewidth), sinangle); |
|
|
|
|
xoffset = itob16(linewidth * linewidth); |
|
|
|
|
xoffset = b16divb16(xoffset, adjwidth); |
|
|
|
|
} |
|
|
|
|
sinangle = b16sin(angle); |
|
|
|
|
b16xoffset = (linewidth * sinangle + 1) >> 1; |
|
|
|
|
|
|
|
|
|
halfoffset = (xoffset >> 1); |
|
|
|
|
gvdbg("height: %d width: %d angle: %08x b16yoffset: %08x b16xoffset: %08x\n", |
|
|
|
|
iheight, iwidth, angle, b16yoffset, b16xoffset); |
|
|
|
|
|
|
|
|
|
/* Return the top triangle (if there is one). NOTE that the horizontal
|
|
|
|
|
* (z) positions are represented with 16 bits of fraction. The vertical |
|
|
|
|
* (y) positions, on the other hand, are integer. |
|
|
|
|
*/ |
|
|
|
|
/* Now we know all four points of the rotated rectangle */ |
|
|
|
|
|
|
|
|
|
if (triheight > 0) |
|
|
|
|
iyoffset = b16toi(b16yoffset + b16HALF); |
|
|
|
|
if (iyoffset > 0) |
|
|
|
|
{ |
|
|
|
|
/* Get the Y positions of each point */ |
|
|
|
|
|
|
|
|
|
b16y = itob16(line.pt1.y); |
|
|
|
|
quad[0].y = b16y - b16yoffset; |
|
|
|
|
quad[1].y = b16y + b16yoffset; |
|
|
|
|
|
|
|
|
|
b16y = itob16(line.pt2.y); |
|
|
|
|
quad[2].y = b16y - b16yoffset; |
|
|
|
|
quad[3].y = b16y + b16yoffset; |
|
|
|
|
|
|
|
|
|
if (line.pt1.x < line.pt2.x) |
|
|
|
|
{ |
|
|
|
|
/* Line is going "south east" */ |
|
|
|
|
|
|
|
|
|
b16x = itob16(line.pt1.x) - halfoffset; |
|
|
|
|
iy = line.pt1.y + halfheight; |
|
|
|
|
|
|
|
|
|
traps[0].top.x1 = b16x + xoffset; |
|
|
|
|
traps[0].top.x2 = traps[0].top.x1; |
|
|
|
|
traps[0].top.y = iy - triheight + 1; |
|
|
|
|
traps[0].bot.x1 = b16x; |
|
|
|
|
traps[0].bot.x2 = b16x + adjwidth - b16ONE; |
|
|
|
|
traps[0].bot.y = iy; |
|
|
|
|
|
|
|
|
|
b16x = itob16(line.pt2.x) + halfoffset; |
|
|
|
|
iy = line.pt2.y - halfheight; |
|
|
|
|
|
|
|
|
|
traps[2].top.x1 = b16x - adjwidth + b16ONE; |
|
|
|
|
traps[2].top.x2 = b16x; |
|
|
|
|
traps[2].top.y = iy; |
|
|
|
|
traps[2].bot.x1 = b16x - xoffset; |
|
|
|
|
traps[2].bot.x2 = traps[2].bot.x1; |
|
|
|
|
traps[2].bot.y = iy + triheight - 1; |
|
|
|
|
/* Line is going "south east". Get the X positions of each point */ |
|
|
|
|
|
|
|
|
|
b16x = itob16(line.pt1.x); |
|
|
|
|
quad[0].x = b16x + b16xoffset; |
|
|
|
|
quad[1].x = b16x - b16xoffset; |
|
|
|
|
|
|
|
|
|
b16x = itob16(line.pt2.x); |
|
|
|
|
quad[2].x = b16x + b16xoffset; |
|
|
|
|
quad[3].x = b16x - b16xoffset; |
|
|
|
|
|
|
|
|
|
gvdbg("Southeast: quad (%08x,%08x),(%08x,%08x),(%08x,%08x),(%08x,%08x)\n", |
|
|
|
|
quad[0].x, quad[0].y, quad[1].x, quad[1].y, |
|
|
|
|
quad[2].x, quad[2].y, quad[3].x, quad[3].y); |
|
|
|
|
|
|
|
|
|
/* Now we can form the trapezoids. The top of the first trapezoid
|
|
|
|
|
* (triangle) is at quad[0] |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
traps[0].top.x1 = quad[0].x; |
|
|
|
|
traps[0].top.x2 = quad[0].x; |
|
|
|
|
traps[0].top.y = b16toi(quad[0].y + b16HALF); |
|
|
|
|
|
|
|
|
|
/* The bottom of the first trapezoid (triangle) may be either at
|
|
|
|
|
* quad[1] or quad[2], depending upon orientation. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
if (quad[1]. y < quad[2].y) |
|
|
|
|
{ |
|
|
|
|
/* quad[1] is at the bottom left of the triangle. Interpolate
|
|
|
|
|
* to get the corresponding point on the right side. |
|
|
|
|
* |
|
|
|
|
* Interpolation is from quad[0] along the line quad[0]->quad[2] |
|
|
|
|
* which as the same slope as the line (positive) |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
b16dxdy = itob16(iwidth) / iheight; |
|
|
|
|
|
|
|
|
|
traps[0].bot.x1 = quad[1].x; |
|
|
|
|
traps[0].bot.x2 = nxgl_interpolate(quad[0].x, quad[1].y - quad[0].y, b16dxdy); |
|
|
|
|
traps[0].bot.y = b16toi(quad[1].y + b16HALF); |
|
|
|
|
|
|
|
|
|
/* quad[1] is at the top left of the second trapezoid. quad[2} is
|
|
|
|
|
* at the bottom right of the second trapezoid. Interpolate to get |
|
|
|
|
* corresponding point on the left side. |
|
|
|
|
* |
|
|
|
|
* Interpolation is from quad[1] along the line quad[1]->quad[3] |
|
|
|
|
* which as the same slope as the line (positive) |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
|
|
|
traps[1].top.x2 = traps[0].bot.x2; |
|
|
|
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
|
|
|
|
|
|
traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, quad[2].y - quad[1].y, b16dxdy); |
|
|
|
|
traps[1].bot.x2 = quad[2].x; |
|
|
|
|
traps[1].bot.y = b16toi(quad[2].y + b16HALF); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
/* quad[2] is at the bottom right of the triangle. Interpolate
|
|
|
|
|
* to get the corresponding point on the left side. |
|
|
|
|
* |
|
|
|
|
* Interpolation is from quad[0] along the line quad[0]->quad[1] |
|
|
|
|
* which orthogonal to the slope of the line (and negative) |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
b16dxdy = -itob16(iheight) / iwidth; |
|
|
|
|
|
|
|
|
|
traps[0].bot.x1 = nxgl_interpolate(quad[0].x, quad[2].y - quad[0].y, b16dxdy); |
|
|
|
|
traps[0].bot.x2 = quad[2].x; |
|
|
|
|
traps[0].bot.y = b16toi(quad[2].y + b16HALF); |
|
|
|
|
|
|
|
|
|
/* quad[2] is at the top right of the second trapezoid. quad[1} is
|
|
|
|
|
* at the bottom left of the second trapezoid. Interpolate to get |
|
|
|
|
* corresponding point on the right side. |
|
|
|
|
* |
|
|
|
|
* Interpolation is from quad[2] along the line quad[2]->quad[3] |
|
|
|
|
* which as the same slope as the previous interpolation. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
|
|
|
traps[1].top.x2 = traps[0].bot.x2; |
|
|
|
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
|
|
|
|
|
|
traps[1].bot.x1 = quad[1].x; |
|
|
|
|
traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, quad[1].y - quad[2].y, b16dxdy); |
|
|
|
|
traps[1].bot.y = b16toi(quad[1].y + b16HALF); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* The final trapezond (triangle) at the bottom is new well defined */ |
|
|
|
|
|
|
|
|
|
traps[2].top.x1 = traps[1].bot.x1; |
|
|
|
|
traps[2].top.x2 = traps[1].bot.x2; |
|
|
|
|
traps[2].top.y = traps[1].bot.y; |
|
|
|
|
|
|
|
|
|
traps[2].bot.x1 = quad[3].x; |
|
|
|
|
traps[2].bot.x2 = quad[3].x; |
|
|
|
|
traps[2].bot.y = b16toi(quad[3].y + b16HALF); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
/* Line is going "south west" */ |
|
|
|
|
|
|
|
|
|
b16x = itob16(line.pt1.x) + halfoffset; |
|
|
|
|
iy = line.pt1.y + halfheight; |
|
|
|
|
|
|
|
|
|
traps[0].top.x1 = b16x - xoffset; |
|
|
|
|
traps[0].top.x2 = traps[0].top.x1; |
|
|
|
|
traps[0].top.y = iy - triheight + 1; |
|
|
|
|
traps[0].bot.x1 = b16x - adjwidth + b16ONE; |
|
|
|
|
traps[0].bot.x2 = b16x; |
|
|
|
|
traps[0].bot.y = iy; |
|
|
|
|
|
|
|
|
|
b16x = itob16(line.pt2.x) - halfoffset; |
|
|
|
|
iy = line.pt2.y - halfheight; |
|
|
|
|
|
|
|
|
|
traps[2].top.x1 = b16x; |
|
|
|
|
traps[2].top.x2 = b16x + adjwidth - b16ONE; |
|
|
|
|
traps[2].top.y = iy; |
|
|
|
|
traps[2].bot.x1 = b16x + xoffset; |
|
|
|
|
traps[2].bot.x2 = traps[2].bot.x1; |
|
|
|
|
traps[2].bot.y = iy + triheight - 1; |
|
|
|
|
/* Get the X positions of each point */ |
|
|
|
|
|
|
|
|
|
b16x = itob16(line.pt1.x); |
|
|
|
|
quad[0].x = b16x - b16xoffset; |
|
|
|
|
quad[1].x = b16x + b16xoffset; |
|
|
|
|
|
|
|
|
|
b16x = itob16(line.pt2.x); |
|
|
|
|
quad[2].x = b16x - b16xoffset; |
|
|
|
|
quad[3].x = b16x + b16xoffset; |
|
|
|
|
|
|
|
|
|
gvdbg("Southwest: quad (%08x,%08x),(%08x,%08x),(%08x,%08x),(%08x,%08x)\n", |
|
|
|
|
quad[0].x, quad[0].y, quad[1].x, quad[1].y, |
|
|
|
|
quad[2].x, quad[2].y, quad[3].x, quad[3].y); |
|
|
|
|
|
|
|
|
|
/* Now we can form the trapezoids. The top of the first trapezoid
|
|
|
|
|
* (triangle) is at quad[0] |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
traps[0].top.x1 = quad[0].x; |
|
|
|
|
traps[0].top.x2 = quad[0].x; |
|
|
|
|
traps[0].top.y = b16toi(quad[0].y + b16HALF); |
|
|
|
|
|
|
|
|
|
/* The bottom of the first trapezoid (triangle) may be either at
|
|
|
|
|
* quad[1] or quad[2], depending upon orientation. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
if (quad[1].y < quad[2].y) |
|
|
|
|
{ |
|
|
|
|
/* quad[1] is at the bottom right of the triangle. Interpolate
|
|
|
|
|
* to get the corresponding point on the left side. |
|
|
|
|
* |
|
|
|
|
* Interpolation is from quad[0] along the line quad[0]->quad[2] |
|
|
|
|
* which as the same slope as the line (negative) |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
b16dxdy = -itob16(iwidth) / iheight; |
|
|
|
|
|
|
|
|
|
traps[0].bot.x1 = nxgl_interpolate(traps[0].top.x1, quad[1].y - quad[0].y, b16dxdy); |
|
|
|
|
traps[0].bot.x2 = quad[1].x; |
|
|
|
|
traps[0].bot.y = b16toi(quad[1].y + b16HALF); |
|
|
|
|
|
|
|
|
|
/* quad[1] is at the top right of the second trapezoid. quad[2} is
|
|
|
|
|
* at the bottom left of the second trapezoid. Interpolate to get |
|
|
|
|
* corresponding point on the right side. |
|
|
|
|
* |
|
|
|
|
* Interpolation is from quad[1] along the line quad[1]->quad[3] |
|
|
|
|
* which as the same slope as the line (negative) |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
|
|
|
traps[1].top.x2 = traps[0].bot.x2; |
|
|
|
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
|
|
|
|
|
|
traps[1].bot.x1 = quad[2].x; |
|
|
|
|
traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, quad[2].y - quad[1].y, b16dxdy); |
|
|
|
|
traps[1].bot.y = b16toi(quad[2].y + b16HALF); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
/* quad[2] is at the bottom left of the triangle. Interpolate
|
|
|
|
|
* to get the corresponding point on the right side. |
|
|
|
|
* |
|
|
|
|
* Interpolation is from quad[0] along the line quad[0]->quad[1] |
|
|
|
|
* which orthogonal to the slope of the line (and positive) |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
b16dxdy = itob16(iheight) / iwidth; |
|
|
|
|
|
|
|
|
|
traps[0].bot.x1 = quad[2].x; |
|
|
|
|
traps[0].bot.x2 = nxgl_interpolate(traps[0].top.x2, quad[2].y - quad[0].y, b16dxdy); |
|
|
|
|
traps[0].bot.y = b16toi(quad[2].y + b16HALF); |
|
|
|
|
|
|
|
|
|
/* quad[2] is at the top left of the second trapezoid. quad[1} is
|
|
|
|
|
* at the bottom right of the second trapezoid. Interpolate to get |
|
|
|
|
* corresponding point on the left side. |
|
|
|
|
* |
|
|
|
|
* Interpolation is from quad[2] along the line quad[2]->quad[3] |
|
|
|
|
* which as the same slope as the previous interpolation. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
|
|
|
traps[1].top.x2 = traps[0].bot.x2; |
|
|
|
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
|
|
|
|
|
|
traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, quad[1].y - quad[2].y, b16dxdy); |
|
|
|
|
traps[1].bot.x2 = quad[1].x; |
|
|
|
|
traps[1].bot.y = b16toi(quad[1].y + b16HALF); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* The final trapezond (triangle) at the bottom is new well defined */ |
|
|
|
|
|
|
|
|
|
traps[2].top.x1 = traps[1].bot.x1; |
|
|
|
|
traps[2].top.x2 = traps[1].bot.x2; |
|
|
|
|
traps[2].top.y = traps[1].bot.y; |
|
|
|
|
|
|
|
|
|
traps[2].bot.x1 = quad[3].x; |
|
|
|
|
traps[2].bot.x2 = quad[3].x; |
|
|
|
|
traps[2].bot.y = b16toi(quad[3].y + b16HALF); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* The center parallelogram is the horizontal edge of each triangle.
|
|
|
|
|
* Note the minor inefficency: that horizontal edges are drawn twice. |
|
|
|
|
*/ |
|
|
|
|
gvdbg("traps[0]: (%08x,%08x,%d),(%08x,%08x,%d)\n", |
|
|
|
|
traps[0].top.x1, traps[0].top.x2, traps[0].top.y, |
|
|
|
|
traps[0].bot.x1, traps[0].bot.x2, traps[0].bot.y); |
|
|
|
|
gvdbg("traps[1]: (%08x,%08x,%d),(%08x,%08x,%d)\n", |
|
|
|
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
|
|
|
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
|
|
|
|
gvdbg("traps[2]: (%08x,%08x,%d),(%08x,%08x,%d)\n", |
|
|
|
|
traps[2].top.x1, traps[2].top.x2, traps[2].top.y, |
|
|
|
|
traps[2].bot.x1, traps[2].bot.x2, traps[2].bot.y); |
|
|
|
|
|
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
|
|
|
traps[1].top.x2 = traps[0].bot.x2; |
|
|
|
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
|
|
|
|
|
|
traps[1].bot.x1 = traps[2].top.x1; |
|
|
|
|
traps[1].bot.x2 = traps[2].top.x2; |
|
|
|
|
traps[1].bot.y = traps[2].top.y; |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -330,12 +515,18 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
@@ -330,12 +515,18 @@ int nxgl_splitline(FAR struct nxgl_vector_s *vector,
|
|
|
|
|
* bottom. Just return the center parallelogram. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
traps[1].top.x1 = itob16(line.pt1.x) - halfoffset; |
|
|
|
|
traps[1].top.x2 = traps[1].top.x1 + adjwidth - 1; |
|
|
|
|
traps[1].top.x1 = itob16(line.pt1.x - (linewidth >> 1)); |
|
|
|
|
traps[1].top.x2 = traps[1].top.x1 + itob16(linewidth - 1); |
|
|
|
|
traps[1].top.y = line.pt1.y; |
|
|
|
|
|
|
|
|
|
traps[1].bot.x1 = itob16(line.pt2.x) - halfoffset; |
|
|
|
|
traps[1].bot.x2 = traps[1].bot.x1 + adjwidth - 1; |
|
|
|
|
|
|
|
|
|
traps[1].bot.x1 = itob16(line.pt2.x - (linewidth >> 1)); |
|
|
|
|
traps[1].bot.x2 = traps[1].bot.x1 + itob16(linewidth - 1); |
|
|
|
|
traps[1].bot.y = line.pt2.y; |
|
|
|
|
|
|
|
|
|
gvdbg("Horizontal traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n", |
|
|
|
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
|
|
|
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
|
|
|
|
|
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|