Browse Source

Fixedwing controller code style

sbg
Lorenz Meier 12 years ago
parent
commit
dc100f2020
  1. 13
      apps/fixedwing_att_control/fixedwing_att_control_att.c
  2. 6
      apps/fixedwing_att_control/fixedwing_att_control_att.h
  3. 333
      apps/fixedwing_att_control/fixedwing_att_control_main.c
  4. 7
      apps/fixedwing_att_control/fixedwing_att_control_rate.c
  5. 4
      apps/fixedwing_att_control/fixedwing_att_control_rate.h
  6. 413
      apps/fixedwing_pos_control/fixedwing_pos_control_main.c

13
apps/fixedwing_att_control/fixedwing_att_control_att.c

@ -112,9 +112,9 @@ static int parameters_update(const struct fw_pos_control_param_handles *h, struc @@ -112,9 +112,9 @@ static int parameters_update(const struct fw_pos_control_param_handles *h, struc
}
int fixedwing_att_control_attitude(const struct vehicle_attitude_setpoint_s *att_sp,
const struct vehicle_attitude_s *att,
const float speed_body[],
struct vehicle_rates_setpoint_s *rates_sp)
const struct vehicle_attitude_s *att,
const float speed_body[],
struct vehicle_rates_setpoint_s *rates_sp)
{
static int counter = 0;
static bool initialized = false;
@ -126,8 +126,7 @@ int fixedwing_att_control_attitude(const struct vehicle_attitude_setpoint_s *att @@ -126,8 +126,7 @@ int fixedwing_att_control_attitude(const struct vehicle_attitude_setpoint_s *att
static PID_t pitch_controller;
if(!initialized)
{
if (!initialized) {
parameters_init(&h);
parameters_update(&h, &p);
pid_init(&roll_controller, p.roll_p, 0, 0, 0, p.rollrate_lim, PID_MODE_DERIVATIV_NONE); //P Controller
@ -153,8 +152,8 @@ int fixedwing_att_control_attitude(const struct vehicle_attitude_setpoint_s *att @@ -153,8 +152,8 @@ int fixedwing_att_control_attitude(const struct vehicle_attitude_setpoint_s *att
float pitch_sp_rollcompensation = p.pitch_roll_compensation_p * fabsf(sinf(att_sp->roll_body));
/* set pitch plus feedforward roll compensation */
rates_sp->pitch = pid_calculate(&pitch_controller,
att_sp->pitch_body + pitch_sp_rollcompensation,
att->pitch, 0, 0);
att_sp->pitch_body + pitch_sp_rollcompensation,
att->pitch, 0, 0);
/* Yaw (from coordinated turn constraint or lateral force) */
rates_sp->yaw = (att->rollspeed * rates_sp->roll + 9.81f * sinf(att->roll) * cosf(att->pitch) + speed_body[0] * rates_sp->pitch * sinf(att->roll))

6
apps/fixedwing_att_control/fixedwing_att_control_att.h

@ -44,8 +44,8 @@ @@ -44,8 +44,8 @@
#include <uORB/topics/vehicle_global_position.h>
int fixedwing_att_control_attitude(const struct vehicle_attitude_setpoint_s *att_sp,
const struct vehicle_attitude_s *att,
const float speed_body[],
struct vehicle_rates_setpoint_s *rates_sp);
const struct vehicle_attitude_s *att,
const float speed_body[],
struct vehicle_rates_setpoint_s *rates_sp);
#endif /* FIXEDWING_ATT_CONTROL_ATT_H_ */

333
apps/fixedwing_att_control/fixedwing_att_control_main.c

@ -93,207 +93,211 @@ static int deamon_task; /**< Handle of deamon task / thread */ @@ -93,207 +93,211 @@ static int deamon_task; /**< Handle of deamon task / thread */
int fixedwing_att_control_thread_main(int argc, char *argv[])
{
/* read arguments */
bool verbose = false;
bool verbose = false;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-v") == 0 || strcmp(argv[i], "--verbose") == 0) {
verbose = true;
}
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-v") == 0 || strcmp(argv[i], "--verbose") == 0) {
verbose = true;
}
}
/* welcome user */
printf("[fixedwing att control] started\n");
/* declare and safely initialize all structs */
struct vehicle_attitude_s att;
memset(&att, 0, sizeof(att));
struct vehicle_attitude_setpoint_s att_sp;
memset(&att_sp, 0, sizeof(att_sp));
struct vehicle_rates_setpoint_s rates_sp;
memset(&rates_sp, 0, sizeof(rates_sp));
struct vehicle_global_position_s global_pos;
memset(&global_pos, 0, sizeof(global_pos));
struct manual_control_setpoint_s manual_sp;
memset(&manual_sp, 0, sizeof(manual_sp));
struct vehicle_status_s vstatus;
memset(&vstatus, 0, sizeof(vstatus));
/* output structs */
struct actuator_controls_s actuators;
memset(&actuators, 0, sizeof(actuators));
/* publish actuator controls */
for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++) {
actuators.control[i] = 0.0f;
}
orb_advert_t actuator_pub = orb_advertise(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, &actuators);
orb_advert_t rates_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &rates_sp);
/* subscribe */
int att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
int att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
int global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
int manual_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
int vstatus_sub = orb_subscribe(ORB_ID(vehicle_status));
/* Setup of loop */
float gyro[3] = {0.0f, 0.0f, 0.0f};
float speed_body[3] = {0.0f, 0.0f, 0.0f};
struct pollfd fds = { .fd = att_sub, .events = POLLIN };
while(!thread_should_exit)
{
/* wait for a sensor update, check for exit condition every 500 ms */
poll(&fds, 1, 500);
/* Check if there is a new position measurement or attitude setpoint */
bool pos_updated;
orb_check(global_pos_sub, &pos_updated);
bool att_sp_updated;
orb_check(att_sp_sub, &att_sp_updated);
/* get a local copy of attitude */
orb_copy(ORB_ID(vehicle_attitude), att_sub, &att);
if(att_sp_updated)
orb_copy(ORB_ID(vehicle_attitude_setpoint), att_sp_sub, &att_sp);
if(pos_updated)
{
orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos);
if(att.R_valid)
{
speed_body[0] = att.R[0][0] * global_pos.vx + att.R[0][1] * global_pos.vy + att.R[0][2] * global_pos.vz;
speed_body[1] = att.R[1][0] * global_pos.vx + att.R[1][1] * global_pos.vy + att.R[1][2] * global_pos.vz;
speed_body[2] = att.R[2][0] * global_pos.vx + att.R[2][1] * global_pos.vy + att.R[2][2] * global_pos.vz;
}
else
{
speed_body[0] = 0;
speed_body[1] = 0;
speed_body[2] = 0;
/* welcome user */
printf("[fixedwing att control] started\n");
/* declare and safely initialize all structs */
struct vehicle_attitude_s att;
memset(&att, 0, sizeof(att));
struct vehicle_attitude_setpoint_s att_sp;
memset(&att_sp, 0, sizeof(att_sp));
struct vehicle_rates_setpoint_s rates_sp;
memset(&rates_sp, 0, sizeof(rates_sp));
struct vehicle_global_position_s global_pos;
memset(&global_pos, 0, sizeof(global_pos));
struct manual_control_setpoint_s manual_sp;
memset(&manual_sp, 0, sizeof(manual_sp));
struct vehicle_status_s vstatus;
memset(&vstatus, 0, sizeof(vstatus));
/* output structs */
struct actuator_controls_s actuators;
memset(&actuators, 0, sizeof(actuators));
/* publish actuator controls */
for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++) {
actuators.control[i] = 0.0f;
}
printf("FW ATT CONTROL: Did not get a valid R\n");
}
orb_advert_t actuator_pub = orb_advertise(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, &actuators);
orb_advert_t rates_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &rates_sp);
/* subscribe */
int att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
int att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
int global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
int manual_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
int vstatus_sub = orb_subscribe(ORB_ID(vehicle_status));
/* Setup of loop */
float gyro[3] = {0.0f, 0.0f, 0.0f};
float speed_body[3] = {0.0f, 0.0f, 0.0f};
struct pollfd fds = { .fd = att_sub, .events = POLLIN };
while (!thread_should_exit) {
/* wait for a sensor update, check for exit condition every 500 ms */
poll(&fds, 1, 500);
/* Check if there is a new position measurement or attitude setpoint */
bool pos_updated;
orb_check(global_pos_sub, &pos_updated);
bool att_sp_updated;
orb_check(att_sp_sub, &att_sp_updated);
/* get a local copy of attitude */
orb_copy(ORB_ID(vehicle_attitude), att_sub, &att);
if (att_sp_updated)
orb_copy(ORB_ID(vehicle_attitude_setpoint), att_sp_sub, &att_sp);
if (pos_updated) {
orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos);
if (att.R_valid) {
speed_body[0] = att.R[0][0] * global_pos.vx + att.R[0][1] * global_pos.vy + att.R[0][2] * global_pos.vz;
speed_body[1] = att.R[1][0] * global_pos.vx + att.R[1][1] * global_pos.vy + att.R[1][2] * global_pos.vz;
speed_body[2] = att.R[2][0] * global_pos.vx + att.R[2][1] * global_pos.vy + att.R[2][2] * global_pos.vz;
} else {
speed_body[0] = 0;
speed_body[1] = 0;
speed_body[2] = 0;
printf("FW ATT CONTROL: Did not get a valid R\n");
}
}
orb_copy(ORB_ID(manual_control_setpoint), manual_sp_sub, &manual_sp);
orb_copy(ORB_ID(vehicle_status), vstatus_sub, &vstatus);
orb_copy(ORB_ID(manual_control_setpoint), manual_sp_sub, &manual_sp);
orb_copy(ORB_ID(vehicle_status), vstatus_sub, &vstatus);
gyro[0] = att.rollspeed;
gyro[1] = att.pitchspeed;
gyro[2] = att.yawspeed;
gyro[0] = att.rollspeed;
gyro[1] = att.pitchspeed;
gyro[2] = att.yawspeed;
/* control */
/* control */
if (vstatus.state_machine == SYSTEM_STATE_AUTO ||
vstatus.state_machine == SYSTEM_STATE_STABILIZED) {
/* attitude control */
fixedwing_att_control_attitude(&att_sp, &att, speed_body, &rates_sp);
if (vstatus.state_machine == SYSTEM_STATE_AUTO ||
vstatus.state_machine == SYSTEM_STATE_STABILIZED) {
/* attitude control */
fixedwing_att_control_attitude(&att_sp, &att, speed_body, &rates_sp);
/* angular rate control */
fixedwing_att_control_rates(&rates_sp, gyro, &actuators);
/* angular rate control */
fixedwing_att_control_rates(&rates_sp, gyro, &actuators);
/* pass through throttle */
actuators.control[3] = att_sp.thrust;
/* pass through throttle */
actuators.control[3] = att_sp.thrust;
/* set flaps to zero */
actuators.control[4] = 0.0f;
/* set flaps to zero */
actuators.control[4] = 0.0f;
} else if (vstatus.state_machine == SYSTEM_STATE_MANUAL) {
if (vstatus.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_SAS) {
} else if (vstatus.state_machine == SYSTEM_STATE_MANUAL) {
if (vstatus.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_SAS) {
/* if the RC signal is lost, try to stay level and go slowly back down to ground */
if (vstatus.rc_signal_lost) {
/* put plane into loiter */
att_sp.roll_body = 0.3f;
att_sp.pitch_body = 0.0f;
/* if the RC signal is lost, try to stay level and go slowly back down to ground */
if (vstatus.rc_signal_lost) {
/* limit throttle to 60 % of last value if sane */
if (isfinite(manual_sp.throttle) &&
(manual_sp.throttle >= 0.0f) &&
(manual_sp.throttle <= 1.0f)) {
att_sp.thrust = 0.6f * manual_sp.throttle;
} else {
att_sp.thrust = 0.0f;
}
att_sp.yaw_body = 0;
/* put plane into loiter */
att_sp.roll_body = 0.3f;
att_sp.pitch_body = 0.0f;
// XXX disable yaw control, loiter
/* limit throttle to 60 % of last value if sane */
if (isfinite(manual_sp.throttle) &&
(manual_sp.throttle >= 0.0f) &&
(manual_sp.throttle <= 1.0f)) {
att_sp.thrust = 0.6f * manual_sp.throttle;
} else {
att_sp.roll_body = manual_sp.roll;
att_sp.pitch_body = manual_sp.pitch;
att_sp.yaw_body = 0;
att_sp.thrust = manual_sp.throttle;
att_sp.thrust = 0.0f;
}
att_sp.timestamp = hrt_absolute_time();
att_sp.yaw_body = 0;
/* attitude control */
fixedwing_att_control_attitude(&att_sp, &att, speed_body, &rates_sp);
// XXX disable yaw control, loiter
/* angular rate control */
fixedwing_att_control_rates(&rates_sp, gyro, &actuators);
} else {
/* pass through throttle */
actuators.control[3] = att_sp.thrust;
att_sp.roll_body = manual_sp.roll;
att_sp.pitch_body = manual_sp.pitch;
att_sp.yaw_body = 0;
att_sp.thrust = manual_sp.throttle;
}
/* pass through flaps */
if (isfinite(manual_sp.flaps)) {
actuators.control[4] = manual_sp.flaps;
} else {
actuators.control[4] = 0.0f;
}
att_sp.timestamp = hrt_absolute_time();
} else if (vstatus.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_DIRECT) {
/* directly pass through values */
actuators.control[0] = manual_sp.roll;
/* positive pitch means negative actuator -> pull up */
actuators.control[1] = manual_sp.pitch;
actuators.control[2] = manual_sp.yaw;
actuators.control[3] = manual_sp.throttle;
if (isfinite(manual_sp.flaps)) {
actuators.control[4] = manual_sp.flaps;
} else {
actuators.control[4] = 0.0f;
}
/* attitude control */
fixedwing_att_control_attitude(&att_sp, &att, speed_body, &rates_sp);
/* angular rate control */
fixedwing_att_control_rates(&rates_sp, gyro, &actuators);
/* pass through throttle */
actuators.control[3] = att_sp.thrust;
/* pass through flaps */
if (isfinite(manual_sp.flaps)) {
actuators.control[4] = manual_sp.flaps;
} else {
actuators.control[4] = 0.0f;
}
}
/* publish rates */
orb_publish(ORB_ID(vehicle_rates_setpoint), rates_pub, &rates_sp);
} else if (vstatus.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_DIRECT) {
/* directly pass through values */
actuators.control[0] = manual_sp.roll;
/* positive pitch means negative actuator -> pull up */
actuators.control[1] = manual_sp.pitch;
actuators.control[2] = manual_sp.yaw;
actuators.control[3] = manual_sp.throttle;
if (isfinite(manual_sp.flaps)) {
actuators.control[4] = manual_sp.flaps;
/* sanity check and publish actuator outputs */
if (isfinite(actuators.control[0]) &&
isfinite(actuators.control[1]) &&
isfinite(actuators.control[2]) &&
isfinite(actuators.control[3]))
{
orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators);
} else {
actuators.control[4] = 0.0f;
}
}
}
printf("[fixedwing_att_control] exiting, stopping all motors.\n");
thread_running = false;
/* publish rates */
orb_publish(ORB_ID(vehicle_rates_setpoint), rates_pub, &rates_sp);
/* sanity check and publish actuator outputs */
if (isfinite(actuators.control[0]) &&
isfinite(actuators.control[1]) &&
isfinite(actuators.control[2]) &&
isfinite(actuators.control[3])) {
orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators);
}
}
printf("[fixedwing_att_control] exiting, stopping all motors.\n");
thread_running = false;
/* kill all outputs */
for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++)
actuators.control[i] = 0.0f;
/* kill all outputs */
for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++)
actuators.control[i] = 0.0f;
orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators);
orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators);
close(att_sub);
close(actuator_pub);
close(rates_pub);
close(att_sub);
close(actuator_pub);
close(rates_pub);
fflush(stdout);
exit(0);
fflush(stdout);
exit(0);
return 0;
return 0;
}
@ -304,6 +308,7 @@ usage(const char *reason) @@ -304,6 +308,7 @@ usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
fprintf(stderr, "usage: fixedwing_att_control {start|stop|status}\n\n");
exit(1);
}
@ -348,9 +353,11 @@ int fixedwing_att_control_main(int argc, char *argv[]) @@ -348,9 +353,11 @@ int fixedwing_att_control_main(int argc, char *argv[])
if (!strcmp(argv[1], "status")) {
if (thread_running) {
printf("\tfixedwing_att_control is running\n");
} else {
printf("\tfixedwing_att_control not started\n");
}
exit(0);
}

7
apps/fixedwing_att_control/fixedwing_att_control_rate.c

@ -157,8 +157,8 @@ static int parameters_update(const struct fw_rate_control_param_handles *h, stru @@ -157,8 +157,8 @@ static int parameters_update(const struct fw_rate_control_param_handles *h, stru
}
int fixedwing_att_control_rates(const struct vehicle_rates_setpoint_s *rate_sp,
const float rates[],
struct actuator_controls_s *actuators)
const float rates[],
struct actuator_controls_s *actuators)
{
static int counter = 0;
static bool initialized = false;
@ -174,8 +174,7 @@ int fixedwing_att_control_rates(const struct vehicle_rates_setpoint_s *rate_sp, @@ -174,8 +174,7 @@ int fixedwing_att_control_rates(const struct vehicle_rates_setpoint_s *rate_sp,
const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
last_run = hrt_absolute_time();
if(!initialized)
{
if (!initialized) {
parameters_init(&h);
parameters_update(&h, &p);
pid_init(&roll_rate_controller, p.rollrate_p, p.rollrate_i, 0, p.rollrate_awu, 1, PID_MODE_DERIVATIV_NONE); // set D part to 0 because the controller layout is with a PI rate controller

4
apps/fixedwing_att_control/fixedwing_att_control_rate.h

@ -42,7 +42,7 @@ @@ -42,7 +42,7 @@
#include <uORB/topics/actuator_controls.h>
int fixedwing_att_control_rates(const struct vehicle_rates_setpoint_s *rate_sp,
const float rates[],
struct actuator_controls_s *actuators);
const float rates[],
struct actuator_controls_s *actuators);
#endif /* FIXEDWING_ATT_CONTROL_RATE_H_ */

413
apps/fixedwing_pos_control/fixedwing_pos_control_main.c

@ -108,8 +108,8 @@ struct planned_path_segments_s { @@ -108,8 +108,8 @@ struct planned_path_segments_s {
double end_lon;
float radius; // Radius of arc
float arc_start_bearing; // Bearing from center to start of arc
float arc_sweep; // Angle (radians) swept out by arc around center.
// Positive for clockwise, negative for counter-clockwise
float arc_sweep; // Angle (radians) swept out by arc around center.
// Positive for clockwise, negative for counter-clockwise
};
@ -176,241 +176,241 @@ static int parameters_update(const struct fw_pos_control_param_handles *h, struc @@ -176,241 +176,241 @@ static int parameters_update(const struct fw_pos_control_param_handles *h, struc
int fixedwing_pos_control_thread_main(int argc, char *argv[])
{
/* read arguments */
bool verbose = false;
bool verbose = false;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-v") == 0 || strcmp(argv[i], "--verbose") == 0) {
verbose = true;
}
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-v") == 0 || strcmp(argv[i], "--verbose") == 0) {
verbose = true;
}
}
/* welcome user */
printf("[fixedwing pos control] started\n");
/* declare and safely initialize all structs */
struct vehicle_global_position_s global_pos;
memset(&global_pos, 0, sizeof(global_pos));
struct vehicle_global_position_s start_pos; // Temporary variable, replace with
memset(&start_pos, 0, sizeof(start_pos)); // previous waypoint when available
struct vehicle_global_position_setpoint_s global_setpoint;
memset(&global_setpoint, 0, sizeof(global_setpoint));
struct vehicle_attitude_s att;
memset(&att, 0, sizeof(att));
struct crosstrack_error_s xtrack_err;
memset(&xtrack_err, 0, sizeof(xtrack_err));
struct parameter_update_s param_update;
memset(&param_update, 0, sizeof(param_update));
/* output structs */
struct vehicle_attitude_setpoint_s attitude_setpoint;
memset(&attitude_setpoint, 0, sizeof(attitude_setpoint));
/* publish attitude setpoint */
attitude_setpoint.roll_body = 0.0f;
attitude_setpoint.pitch_body = 0.0f;
attitude_setpoint.yaw_body = 0.0f;
attitude_setpoint.thrust = 0.0f;
orb_advert_t attitude_setpoint_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &attitude_setpoint);
/* subscribe */
int global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
int global_setpoint_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint));
int att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
int param_sub = orb_subscribe(ORB_ID(parameter_update));
/* Setup of loop */
struct pollfd fds[2] = {
{ .fd = param_sub, .events = POLLIN },
{ .fd = att_sub, .events = POLLIN }
};
bool global_sp_updated_set_once = false;
float psi_track = 0.0f;
int counter = 0;
struct fw_pos_control_params p;
struct fw_pos_control_param_handles h;
PID_t heading_controller;
PID_t heading_rate_controller;
PID_t offtrack_controller;
PID_t altitude_controller;
parameters_init(&h);
parameters_update(&h, &p);
pid_init(&heading_controller, p.heading_p, 0.0f, 0.0f, 0.0f, 10000.0f, PID_MODE_DERIVATIV_NONE); //arbitrary high limit
pid_init(&heading_rate_controller, p.headingr_p, p.headingr_i, 0.0f, 0.0f, p.roll_lim, PID_MODE_DERIVATIV_NONE);
pid_init(&altitude_controller, p.altitude_p, 0.0f, 0.0f, 0.0f, p.pitch_lim, PID_MODE_DERIVATIV_NONE);
pid_init(&offtrack_controller, p.xtrack_p, 0.0f, 0.0f, 0.0f , 60.0f * M_DEG_TO_RAD, PID_MODE_DERIVATIV_NONE); //TODO: remove hardcoded value
/* error and performance monitoring */
perf_counter_t fw_interval_perf = perf_alloc(PC_INTERVAL, "fixedwing_pos_control_interval");
perf_counter_t fw_err_perf = perf_alloc(PC_COUNT, "fixedwing_pos_control_err");
while (!thread_should_exit) {
/* wait for a sensor update, check for exit condition every 500 ms */
int ret = poll(fds, 2, 500);
if (ret < 0) {
/* poll error, count it in perf */
perf_count(fw_err_perf);
} else if (ret == 0) {
/* no return value, ignore */
} else {
/* only update parameters if they changed */
if (fds[0].revents & POLLIN) {
/* read from param to clear updated flag */
struct parameter_update_s update;
orb_copy(ORB_ID(parameter_update), param_sub, &update);
/* update parameters from storage */
parameters_update(&h, &p);
pid_set_parameters(&heading_controller, p.heading_p, 0, 0, 0, 10000.0f); //arbitrary high limit
pid_set_parameters(&heading_rate_controller, p.headingr_p, p.headingr_i, 0, 0, p.roll_lim);
pid_set_parameters(&altitude_controller, p.altitude_p, 0, 0, 0, p.pitch_lim);
pid_set_parameters(&offtrack_controller, p.xtrack_p, 0, 0, 0, 60.0f * M_DEG_TO_RAD); //TODO: remove hardcoded value
}
/* only run controller if attitude changed */
if (fds[1].revents & POLLIN) {
static uint64_t last_run = 0;
const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
last_run = hrt_absolute_time();
/* welcome user */
printf("[fixedwing pos control] started\n");
/* declare and safely initialize all structs */
struct vehicle_global_position_s global_pos;
memset(&global_pos, 0, sizeof(global_pos));
struct vehicle_global_position_s start_pos; // Temporary variable, replace with
memset(&start_pos, 0, sizeof(start_pos)); // previous waypoint when available
struct vehicle_global_position_setpoint_s global_setpoint;
memset(&global_setpoint, 0, sizeof(global_setpoint));
struct vehicle_attitude_s att;
memset(&att, 0, sizeof(att));
struct crosstrack_error_s xtrack_err;
memset(&xtrack_err, 0, sizeof(xtrack_err));
struct parameter_update_s param_update;
memset(&param_update, 0, sizeof(param_update));
/* output structs */
struct vehicle_attitude_setpoint_s attitude_setpoint;
memset(&attitude_setpoint, 0, sizeof(attitude_setpoint));
/* publish attitude setpoint */
attitude_setpoint.roll_body = 0.0f;
attitude_setpoint.pitch_body = 0.0f;
attitude_setpoint.yaw_body = 0.0f;
attitude_setpoint.thrust = 0.0f;
orb_advert_t attitude_setpoint_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &attitude_setpoint);
/* subscribe */
int global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
int global_setpoint_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint));
int att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
int param_sub = orb_subscribe(ORB_ID(parameter_update));
/* Setup of loop */
struct pollfd fds[2] = {
{ .fd = param_sub, .events = POLLIN },
{ .fd = att_sub, .events = POLLIN }
};
bool global_sp_updated_set_once = false;
float psi_track = 0.0f;
int counter = 0;
struct fw_pos_control_params p;
struct fw_pos_control_param_handles h;
PID_t heading_controller;
PID_t heading_rate_controller;
PID_t offtrack_controller;
PID_t altitude_controller;
parameters_init(&h);
parameters_update(&h, &p);
pid_init(&heading_controller, p.heading_p, 0.0f, 0.0f, 0.0f, 10000.0f, PID_MODE_DERIVATIV_NONE); //arbitrary high limit
pid_init(&heading_rate_controller, p.headingr_p, p.headingr_i, 0.0f, 0.0f, p.roll_lim, PID_MODE_DERIVATIV_NONE);
pid_init(&altitude_controller, p.altitude_p, 0.0f, 0.0f, 0.0f, p.pitch_lim, PID_MODE_DERIVATIV_NONE);
pid_init(&offtrack_controller, p.xtrack_p, 0.0f, 0.0f, 0.0f , 60.0f*M_DEG_TO_RAD, PID_MODE_DERIVATIV_NONE); //TODO: remove hardcoded value
/* error and performance monitoring */
perf_counter_t fw_interval_perf = perf_alloc(PC_INTERVAL, "fixedwing_pos_control_interval");
perf_counter_t fw_err_perf = perf_alloc(PC_COUNT, "fixedwing_pos_control_err");
while(!thread_should_exit)
{
/* wait for a sensor update, check for exit condition every 500 ms */
int ret = poll(fds, 2, 500);
if (ret < 0) {
/* poll error, count it in perf */
perf_count(fw_err_perf);
} else if (ret == 0) {
/* no return value, ignore */
} else {
/* only update parameters if they changed */
if (fds[0].revents & POLLIN) {
/* read from param to clear updated flag */
struct parameter_update_s update;
orb_copy(ORB_ID(parameter_update), param_sub, &update);
/* update parameters from storage */
parameters_update(&h, &p);
pid_set_parameters(&heading_controller, p.heading_p, 0, 0, 0, 10000.0f); //arbitrary high limit
pid_set_parameters(&heading_rate_controller, p.headingr_p, p.headingr_i, 0, 0, p.roll_lim);
pid_set_parameters(&altitude_controller, p.altitude_p, 0, 0, 0, p.pitch_lim);
pid_set_parameters(&offtrack_controller, p.xtrack_p, 0, 0, 0, 60.0f*M_DEG_TO_RAD); //TODO: remove hardcoded value
/* check if there is a new position or setpoint */
bool pos_updated;
orb_check(global_pos_sub, &pos_updated);
bool global_sp_updated;
orb_check(global_setpoint_sub, &global_sp_updated);
/* load local copies */
orb_copy(ORB_ID(vehicle_attitude), att_sub, &att);
if (pos_updated) {
orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos);
}
/* only run controller if attitude changed */
if (fds[1].revents & POLLIN) {
if (global_sp_updated) {
orb_copy(ORB_ID(vehicle_global_position_setpoint), global_setpoint_sub, &global_setpoint);
start_pos = global_pos; //for now using the current position as the startpoint (= approx. last waypoint because the setpoint switch occurs at the waypoint)
global_sp_updated_set_once = true;
psi_track = get_bearing_to_next_waypoint((double)global_pos.lat / (double)1e7d, (double)global_pos.lon / (double)1e7d,
(double)global_setpoint.lat / (double)1e7d, (double)global_setpoint.lon / (double)1e7d);
printf("next wp direction: %0.4f\n", (double)psi_track);
}
static uint64_t last_run = 0;
const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
last_run = hrt_absolute_time();
/* Simple Horizontal Control */
if (global_sp_updated_set_once) {
// if (counter % 100 == 0)
// printf("lat_sp %d, ln_sp %d, lat: %d, lon: %d\n", global_setpoint.lat, global_setpoint.lon, global_pos.lat, global_pos.lon);
/* check if there is a new position or setpoint */
bool pos_updated;
orb_check(global_pos_sub, &pos_updated);
bool global_sp_updated;
orb_check(global_setpoint_sub, &global_sp_updated);
/* calculate crosstrack error */
// Only the case of a straight line track following handled so far
int distance_res = get_distance_to_line(&xtrack_err, (double)global_pos.lat / (double)1e7d, (double)global_pos.lon / (double)1e7d,
(double)start_pos.lat / (double)1e7d, (double)start_pos.lon / (double)1e7d,
(double)global_setpoint.lat / (double)1e7d, (double)global_setpoint.lon / (double)1e7d);
/* load local copies */
orb_copy(ORB_ID(vehicle_attitude), att_sub, &att);
// XXX what is xtrack_err.past_end?
if (distance_res == OK /*&& !xtrack_err.past_end*/) {
if (pos_updated) {
orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos);
}
float delta_psi_c = pid_calculate(&offtrack_controller, 0, xtrack_err.distance, 0.0f, 0.0f); //p.xtrack_p * xtrack_err.distance
if (global_sp_updated) {
orb_copy(ORB_ID(vehicle_global_position_setpoint), global_setpoint_sub, &global_setpoint);
start_pos = global_pos; //for now using the current position as the startpoint (= approx. last waypoint because the setpoint switch occurs at the waypoint)
global_sp_updated_set_once = true;
psi_track = get_bearing_to_next_waypoint((double)global_pos.lat / (double)1e7d, (double)global_pos.lon / (double)1e7d,
(double)global_setpoint.lat / (double)1e7d, (double)global_setpoint.lon / (double)1e7d);
printf("next wp direction: %0.4f\n", (double)psi_track);
}
float psi_c = psi_track + delta_psi_c;
float psi_e = psi_c - att.yaw;
/* wrap difference back onto -pi..pi range */
psi_e = _wrap_pi(psi_e);
if (verbose) {
printf("xtrack_err.distance %.4f ", (double)xtrack_err.distance);
printf("delta_psi_c %.4f ", (double)delta_psi_c);
printf("psi_c %.4f ", (double)psi_c);
printf("att.yaw %.4f ", (double)att.yaw);
printf("psi_e %.4f ", (double)psi_e);
}
/* Simple Horizontal Control */
if(global_sp_updated_set_once)
{
// if (counter % 100 == 0)
// printf("lat_sp %d, ln_sp %d, lat: %d, lon: %d\n", global_setpoint.lat, global_setpoint.lon, global_pos.lat, global_pos.lon);
/* calculate crosstrack error */
// Only the case of a straight line track following handled so far
int distance_res = get_distance_to_line(&xtrack_err, (double)global_pos.lat / (double)1e7d, (double)global_pos.lon / (double)1e7d,
(double)start_pos.lat / (double)1e7d, (double)start_pos.lon / (double)1e7d,
(double)global_setpoint.lat / (double)1e7d, (double)global_setpoint.lon / (double)1e7d);
// XXX what is xtrack_err.past_end?
if(distance_res == OK /*&& !xtrack_err.past_end*/) {
float delta_psi_c = pid_calculate(&offtrack_controller, 0, xtrack_err.distance, 0.0f, 0.0f); //p.xtrack_p * xtrack_err.distance
float psi_c = psi_track + delta_psi_c;
float psi_e = psi_c - att.yaw;
/* wrap difference back onto -pi..pi range */
psi_e = _wrap_pi(psi_e);
if (verbose) {
printf("xtrack_err.distance %.4f ", (double)xtrack_err.distance);
printf("delta_psi_c %.4f ", (double)delta_psi_c);
printf("psi_c %.4f ", (double)psi_c);
printf("att.yaw %.4f ", (double)att.yaw);
printf("psi_e %.4f ", (double)psi_e);
}
/* calculate roll setpoint, do this artificially around zero */
float delta_psi_rate_c = pid_calculate(&heading_controller, psi_e, 0.0f, 0.0f, 0.0f);
float psi_rate_track = 0; //=V_gr/r_track , this will be needed for implementation of arc following
float psi_rate_c = delta_psi_rate_c + psi_rate_track;
/* limit turn rate */
if(psi_rate_c > p.headingr_lim) {
psi_rate_c = p.headingr_lim;
} else if(psi_rate_c < -p.headingr_lim) {
psi_rate_c = -p.headingr_lim;
}
float psi_rate_e = psi_rate_c - att.yawspeed;
// XXX sanity check: Assume 10 m/s stall speed and no stall condition
float ground_speed = sqrtf(global_pos.vx * global_pos.vx + global_pos.vy * global_pos.vy);
if (ground_speed < 10.0f) {
ground_speed = 10.0f;
}
float psi_rate_e_scaled = psi_rate_e * ground_speed / 9.81f; //* V_gr / g
attitude_setpoint.roll_body = pid_calculate(&heading_rate_controller, psi_rate_e_scaled, 0.0f, 0.0f, deltaT);
if (verbose) {
printf("psi_rate_c %.4f ", (double)psi_rate_c);
printf("psi_rate_e_scaled %.4f ", (double)psi_rate_e_scaled);
printf("rollbody %.4f\n", (double)attitude_setpoint.roll_body);
}
if (verbose && counter % 100 == 0)
printf("xtrack_err.distance: %0.4f, delta_psi_c: %0.4f\n",xtrack_err.distance, delta_psi_c);
} else {
if (verbose && counter % 100 == 0)
printf("distance_res: %d, past_end %d\n", distance_res, xtrack_err.past_end);
/* calculate roll setpoint, do this artificially around zero */
float delta_psi_rate_c = pid_calculate(&heading_controller, psi_e, 0.0f, 0.0f, 0.0f);
float psi_rate_track = 0; //=V_gr/r_track , this will be needed for implementation of arc following
float psi_rate_c = delta_psi_rate_c + psi_rate_track;
/* limit turn rate */
if (psi_rate_c > p.headingr_lim) {
psi_rate_c = p.headingr_lim;
} else if (psi_rate_c < -p.headingr_lim) {
psi_rate_c = -p.headingr_lim;
}
/* Very simple Altitude Control */
if(pos_updated)
{
float psi_rate_e = psi_rate_c - att.yawspeed;
//TODO: take care of relative vs. ab. altitude
attitude_setpoint.pitch_body = pid_calculate(&altitude_controller, global_setpoint.altitude, global_pos.alt, 0.0f, 0.0f);
// XXX sanity check: Assume 10 m/s stall speed and no stall condition
float ground_speed = sqrtf(global_pos.vx * global_pos.vx + global_pos.vy * global_pos.vy);
if (ground_speed < 10.0f) {
ground_speed = 10.0f;
}
// XXX need speed control
attitude_setpoint.thrust = 0.7f;
float psi_rate_e_scaled = psi_rate_e * ground_speed / 9.81f; //* V_gr / g
/* publish the attitude setpoint */
orb_publish(ORB_ID(vehicle_attitude_setpoint), attitude_setpoint_pub, &attitude_setpoint);
attitude_setpoint.roll_body = pid_calculate(&heading_rate_controller, psi_rate_e_scaled, 0.0f, 0.0f, deltaT);
/* measure in what intervals the controller runs */
perf_count(fw_interval_perf);
if (verbose) {
printf("psi_rate_c %.4f ", (double)psi_rate_c);
printf("psi_rate_e_scaled %.4f ", (double)psi_rate_e_scaled);
printf("rollbody %.4f\n", (double)attitude_setpoint.roll_body);
}
counter++;
if (verbose && counter % 100 == 0)
printf("xtrack_err.distance: %0.4f, delta_psi_c: %0.4f\n", xtrack_err.distance, delta_psi_c);
} else {
// XXX no setpoint, decent default needed (loiter?)
if (verbose && counter % 100 == 0)
printf("distance_res: %d, past_end %d\n", distance_res, xtrack_err.past_end);
}
/* Very simple Altitude Control */
if (pos_updated) {
//TODO: take care of relative vs. ab. altitude
attitude_setpoint.pitch_body = pid_calculate(&altitude_controller, global_setpoint.altitude, global_pos.alt, 0.0f, 0.0f);
}
// XXX need speed control
attitude_setpoint.thrust = 0.7f;
/* publish the attitude setpoint */
orb_publish(ORB_ID(vehicle_attitude_setpoint), attitude_setpoint_pub, &attitude_setpoint);
/* measure in what intervals the controller runs */
perf_count(fw_interval_perf);
counter++;
} else {
// XXX no setpoint, decent default needed (loiter?)
}
}
}
}
printf("[fixedwing_pos_control] exiting.\n");
thread_running = false;
printf("[fixedwing_pos_control] exiting.\n");
thread_running = false;
close(attitude_setpoint_pub);
close(attitude_setpoint_pub);
fflush(stdout);
exit(0);
fflush(stdout);
exit(0);
return 0;
return 0;
}
@ -421,6 +421,7 @@ usage(const char *reason) @@ -421,6 +421,7 @@ usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
fprintf(stderr, "usage: fixedwing_pos_control {start|stop|status}\n\n");
exit(1);
}
@ -465,9 +466,11 @@ int fixedwing_pos_control_main(int argc, char *argv[]) @@ -465,9 +466,11 @@ int fixedwing_pos_control_main(int argc, char *argv[])
if (!strcmp(argv[1], "status")) {
if (thread_running) {
printf("\tfixedwing_pos_control is running\n");
} else {
printf("\tfixedwing_pos_control not started\n");
}
exit(0);
}

Loading…
Cancel
Save