bresch
5 years ago
committed by
Mathieu Bresciani
2 changed files with 174 additions and 0 deletions
@ -0,0 +1,172 @@
@@ -0,0 +1,172 @@
|
||||
/****************************************************************************
|
||||
* |
||||
* Copyright (C) 2020 PX4 Development Team. All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in |
||||
* the documentation and/or other materials provided with the |
||||
* distribution. |
||||
* 3. Neither the name PX4 nor the names of its contributors may be |
||||
* used to endorse or promote products derived from this software |
||||
* without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
* |
||||
****************************************************************************/ |
||||
|
||||
/**
|
||||
* Test code for the Zero Order Hover Thrust Estimator |
||||
* Run this test only using make tests TESTFILTER=zero_order_hover_thrust_ekf |
||||
*/ |
||||
|
||||
#include <gtest/gtest.h> |
||||
#include <matrix/matrix/math.hpp> |
||||
#include <random> |
||||
|
||||
#include "zero_order_hover_thrust_ekf.hpp" |
||||
|
||||
using namespace matrix; |
||||
|
||||
class ZeroOrderHoverThrustEkfTest : public ::testing::Test |
||||
{ |
||||
public: |
||||
float computeAccelFromThrustAndHoverThrust(float thrust, float hover_thrust); |
||||
ZeroOrderHoverThrustEkf::status runEkf(float accel, float thrust, float time, float accel_noise = 0.f, |
||||
float thr_noise = 0.f); |
||||
|
||||
std::normal_distribution<float> standard_normal_distribution_; |
||||
std::default_random_engine random_generator_; // Pseudo-random generator with constant seed
|
||||
|
||||
private: |
||||
ZeroOrderHoverThrustEkf _ekf{}; |
||||
static constexpr float _dt = 0.02f; |
||||
}; |
||||
|
||||
float ZeroOrderHoverThrustEkfTest::computeAccelFromThrustAndHoverThrust(float thrust, float hover_thrust) |
||||
{ |
||||
return CONSTANTS_ONE_G * thrust / hover_thrust - CONSTANTS_ONE_G; |
||||
} |
||||
|
||||
ZeroOrderHoverThrustEkf::status ZeroOrderHoverThrustEkfTest::runEkf(float accel, float thrust, float time, |
||||
float accel_noise, float thr_noise) |
||||
{ |
||||
ZeroOrderHoverThrustEkf::status status{}; |
||||
|
||||
for (float t = 0.f; t <= time; t += _dt) { |
||||
_ekf.predict(_dt); |
||||
float noisy_accel = accel + accel_noise * standard_normal_distribution_(random_generator_); |
||||
float noisy_thrust = thrust + thr_noise * standard_normal_distribution_(random_generator_); |
||||
_ekf.fuseAccZ(noisy_accel, noisy_thrust, status); |
||||
} |
||||
|
||||
return status; |
||||
} |
||||
|
||||
TEST_F(ZeroOrderHoverThrustEkfTest, testStaticCase) |
||||
{ |
||||
// GIVEN: a vehicle at hover, (the estimator starting at the true value)
|
||||
const float thrust = 0.5f; |
||||
const float hover_thrust_true = 0.5f; |
||||
const float accel_meas = 0.f; |
||||
|
||||
// WHEN: we input noiseless data and run the filter
|
||||
ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, 1.f); |
||||
|
||||
// THEN: The estimate should not move and its variance decrease quickly
|
||||
EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 1e-4f); |
||||
EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
||||
EXPECT_NEAR(status.accel_noise_var, 0.f, 1.f); // The noise learning is slow and takes more than 1s to go to zero
|
||||
} |
||||
|
||||
TEST_F(ZeroOrderHoverThrustEkfTest, testStaticConvergence) |
||||
{ |
||||
// GIVEN: a vehicle at hover, but the estimator is starting at hover_thrust = 0.5
|
||||
const float thrust = 0.72f; |
||||
const float hover_thrust_true = 0.72f; |
||||
const float accel_meas = computeAccelFromThrustAndHoverThrust(thrust, hover_thrust_true); |
||||
|
||||
// WHEN: we input noiseless data and run the filter
|
||||
ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, 2.f); |
||||
|
||||
// THEN: the state should converge to the true value and its variance decrease
|
||||
EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 1e-2f); |
||||
EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
||||
EXPECT_NEAR(status.accel_noise_var, 0.f, 1.f); // The noise learning is slow and takes more than 1s to go to zero
|
||||
} |
||||
|
||||
TEST_F(ZeroOrderHoverThrustEkfTest, testStaticConvergenceWithNoise) |
||||
{ |
||||
// GIVEN: a vehicle at hover, the estimator starts with the wrong estimate and the measurements are noisy
|
||||
const float sigma_noise = 3.f; |
||||
const float noise_var = sigma_noise * sigma_noise; |
||||
const float thrust = 0.72f; |
||||
const float hover_thrust_true = 0.72f; |
||||
const float accel_meas = computeAccelFromThrustAndHoverThrust(thrust, hover_thrust_true); |
||||
const float t_sim = 10.f; |
||||
|
||||
// WHEN: we input noisy accel data and run the filter
|
||||
ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, t_sim, sigma_noise); |
||||
|
||||
// THEN: the estimate should converge and the accel noise variance should be close to the true noise value
|
||||
EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 5e-2f); |
||||
EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
||||
EXPECT_NEAR(status.accel_noise_var, noise_var, 0.3f * noise_var); |
||||
} |
||||
|
||||
TEST_F(ZeroOrderHoverThrustEkfTest, testLargeAccelNoiseAndBias) |
||||
{ |
||||
// GIVEN: a vehicle descending, the estimator starts with the wrong estimate, the measurements are really noisy
|
||||
const float sigma_noise = 7.f; |
||||
const float noise_var = sigma_noise * sigma_noise; |
||||
const float thrust = 0.4f; // Below hover thrust
|
||||
const float hover_thrust_true = 0.72f; |
||||
const float accel_meas = computeAccelFromThrustAndHoverThrust(thrust, hover_thrust_true); |
||||
const float t_sim = 15.f; |
||||
|
||||
// WHEN: we input noisy accel data and run the filter
|
||||
ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, t_sim, sigma_noise); |
||||
|
||||
// THEN: the estimate should converge and the accel noise variance should be close to the true noise value
|
||||
EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 5e-2); |
||||
EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
||||
EXPECT_NEAR(status.accel_noise_var, noise_var, 0.2f * noise_var); |
||||
} |
||||
|
||||
TEST_F(ZeroOrderHoverThrustEkfTest, testThrustAndAccelNoise) |
||||
{ |
||||
// GIVEN: a vehicle climbing, the estimator starts with the wrong estimate, the measurements
|
||||
// and the input thrust are noisy
|
||||
const float accel_noise = 2.f; |
||||
const float accel_var = accel_noise * accel_noise; |
||||
const float thr_noise = 0.1f; |
||||
const float thrust = 0.72f; // Above hover thrust
|
||||
const float hover_thrust_true = 0.6f; |
||||
const float accel_meas = computeAccelFromThrustAndHoverThrust(thrust, hover_thrust_true); |
||||
const float t_sim = 15.f; |
||||
|
||||
// WHEN: we input noisy accel and thrust data, and run the filter
|
||||
ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, t_sim, accel_noise, thr_noise); |
||||
|
||||
// THEN: the estimate should converge and the accel noise variance should be close to the true noise value
|
||||
EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 5e-2f); |
||||
EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
||||
// Because of the nonlinear measurment model and the thust noise, the accel noise estimation is a bit worse
|
||||
EXPECT_NEAR(status.accel_noise_var, accel_var, 0.5f * accel_var); |
||||
} |
Loading…
Reference in new issue