|
|
|
@ -10,6 +10,7 @@ for source_index = 1:length(BARO)
@@ -10,6 +10,7 @@ for source_index = 1:length(BARO)
|
|
|
|
|
output_index = output_index + 1; |
|
|
|
|
end |
|
|
|
|
end |
|
|
|
|
save baro_data.mat baro_data; |
|
|
|
|
|
|
|
|
|
%% extract IMU delta angles and velocity data |
|
|
|
|
clear imu_data; |
|
|
|
@ -18,6 +19,7 @@ imu_data.gyro_dt = IMT(:,5);
@@ -18,6 +19,7 @@ imu_data.gyro_dt = IMT(:,5);
|
|
|
|
|
imu_data.del_ang = IMT(:,6:8); |
|
|
|
|
imu_data.accel_dt = IMT(:,4); |
|
|
|
|
imu_data.del_vel = IMT(:,9:11); |
|
|
|
|
save imu_data.mat imu_data; |
|
|
|
|
|
|
|
|
|
%% convert magnetomer data |
|
|
|
|
clear mag_data; |
|
|
|
@ -32,13 +34,17 @@ for source_index = 1:length(MAG)
@@ -32,13 +34,17 @@ for source_index = 1:length(MAG)
|
|
|
|
|
output_index = output_index + 1; |
|
|
|
|
end |
|
|
|
|
end |
|
|
|
|
save mag_data.mat mag_data; |
|
|
|
|
|
|
|
|
|
%% save GPS daa |
|
|
|
|
clear gps_data; |
|
|
|
|
gps_data.time_us = GPS(:,2); |
|
|
|
|
gps_data.pos_error = GPA(:,4); |
|
|
|
|
gps_data.spd_error = GPA(:,6); |
|
|
|
|
gps_data.hgt_error = GPA(:,5); |
|
|
|
|
|
|
|
|
|
maxindex = min(length(GPS),length(GPA)); |
|
|
|
|
|
|
|
|
|
gps_data.time_us = GPS(1:maxindex,2); |
|
|
|
|
gps_data.pos_error = GPA(1:maxindex,4); |
|
|
|
|
gps_data.spd_error = GPA(1:maxindex,6); |
|
|
|
|
gps_data.hgt_error = GPA(1:maxindex,5); |
|
|
|
|
|
|
|
|
|
% set reference point used to set NED origin when GPS accuracy is sufficient |
|
|
|
|
gps_data.start_index = max(find(gps_data.pos_error < 5.0, 1 ),find(gps_data.spd_error < 1.0, 1 )); |
|
|
|
@ -46,7 +52,7 @@ gps_data.refLLH = [GPS(gps_data.start_index,8);GPS(gps_data.start_index,9);GPS(g
@@ -46,7 +52,7 @@ gps_data.refLLH = [GPS(gps_data.start_index,8);GPS(gps_data.start_index,9);GPS(g
|
|
|
|
|
|
|
|
|
|
% convert GPS data to NED |
|
|
|
|
deg2rad = pi/180; |
|
|
|
|
for index = 1:length(GPS) |
|
|
|
|
for index = 1:1:maxindex |
|
|
|
|
if (GPS(index,3) >= 3) |
|
|
|
|
gps_data.pos_ned(index,:) = LLH2NED([GPS(index,8);GPS(index,9);GPS(index,10)],gps_data.refLLH); |
|
|
|
|
gps_data.vel_ned(index,:) = [GPS(index,11).*cos(deg2rad*GPS(index,12)),GPS(index,11).*sin(deg2rad*GPS(index,12)),GPS(index,13)]; |
|
|
|
@ -56,39 +62,42 @@ for index = 1:length(GPS)
@@ -56,39 +62,42 @@ for index = 1:length(GPS)
|
|
|
|
|
end |
|
|
|
|
end |
|
|
|
|
|
|
|
|
|
save gps_data.mat gps_data; |
|
|
|
|
|
|
|
|
|
%% save range finder data |
|
|
|
|
clear rng_data; |
|
|
|
|
rng_data.time_us = RFND(:,2); |
|
|
|
|
rng_data.dist = RFND(:,3); |
|
|
|
|
if (exist('RFND','var')) |
|
|
|
|
rng_data.time_us = RFND(:,2); |
|
|
|
|
rng_data.dist = RFND(:,3); |
|
|
|
|
save rng_data.mat rng_data; |
|
|
|
|
end |
|
|
|
|
|
|
|
|
|
%% save optical flow data |
|
|
|
|
clear flow_data; |
|
|
|
|
flow_data.time_us = OF(:,2); |
|
|
|
|
flow_data.qual = OF(:,3)/255; % scale quality from 0 to 1 |
|
|
|
|
flow_data.flowX = OF(:,4); % optical flow rate about the X body axis (rad/sec) |
|
|
|
|
flow_data.flowY = OF(:,5); % optical flow rate about the Y body axis (rad/sec) |
|
|
|
|
flow_data.bodyX = OF(:,6); % angular rate about the X body axis (rad/sec) |
|
|
|
|
flow_data.bodyY = OF(:,7); % angular rate about the Y body axis (rad/sec) |
|
|
|
|
if (exist('OF','var')) |
|
|
|
|
flow_data.time_us = OF(:,2); |
|
|
|
|
flow_data.qual = OF(:,3)/255; % scale quality from 0 to 1 |
|
|
|
|
flow_data.flowX = OF(:,4); % optical flow rate about the X body axis (rad/sec) |
|
|
|
|
flow_data.flowY = OF(:,5); % optical flow rate about the Y body axis (rad/sec) |
|
|
|
|
flow_data.bodyX = OF(:,6); % angular rate about the X body axis (rad/sec) |
|
|
|
|
flow_data.bodyY = OF(:,7); % angular rate about the Y body axis (rad/sec) |
|
|
|
|
save flow_data.mat flow_data; |
|
|
|
|
end |
|
|
|
|
|
|
|
|
|
%% save visual odometry data |
|
|
|
|
clear viso_data; |
|
|
|
|
viso_data.time_us = VISO(:,2); |
|
|
|
|
viso_data.dt = VISO(:,3); % time period the measurement was sampled across (sec) |
|
|
|
|
viso_data.dAngX = VISO(:,4); % delta angle about the X body axis (rad) |
|
|
|
|
viso_data.dAngY = VISO(:,5); % delta angle about the Y body axis (rad) |
|
|
|
|
viso_data.dAngZ = VISO(:,6); % delta angle about the Z body axis (rad) |
|
|
|
|
viso_data.dPosX = VISO(:,7); % delta position along the X body axis (m) |
|
|
|
|
viso_data.dPosY = VISO(:,8); % delta position along the Y body axis (m) |
|
|
|
|
viso_data.dPosZ = VISO(:,9); % delta position along the Z body axis (m) |
|
|
|
|
viso_data.qual = VISO(:,10)/100; % quality from 0 - 1 |
|
|
|
|
if (exist('VISO','var')) |
|
|
|
|
viso_data.time_us = VISO(:,2); |
|
|
|
|
viso_data.dt = VISO(:,3); % time period the measurement was sampled across (sec) |
|
|
|
|
viso_data.dAngX = VISO(:,4); % delta angle about the X body axis (rad) |
|
|
|
|
viso_data.dAngY = VISO(:,5); % delta angle about the Y body axis (rad) |
|
|
|
|
viso_data.dAngZ = VISO(:,6); % delta angle about the Z body axis (rad) |
|
|
|
|
viso_data.dPosX = VISO(:,7); % delta position along the X body axis (m) |
|
|
|
|
viso_data.dPosY = VISO(:,8); % delta position along the Y body axis (m) |
|
|
|
|
viso_data.dPosZ = VISO(:,9); % delta position along the Z body axis (m) |
|
|
|
|
viso_data.qual = VISO(:,10)/100; % quality from 0 - 1 |
|
|
|
|
save viso_data.mat viso_data; |
|
|
|
|
end |
|
|
|
|
|
|
|
|
|
%% save data and clear workspace |
|
|
|
|
clearvars -except baro_data imu_data mag_data gps_data rng_data flow_data viso_data; |
|
|
|
|
|
|
|
|
|
save baro_data.mat baro_data; |
|
|
|
|
save imu_data.mat imu_data; |
|
|
|
|
save mag_data.mat mag_data; |
|
|
|
|
save gps_data.mat gps_data; |
|
|
|
|
save rng_data.mat rng_data; |
|
|
|
|
save flow_data.mat flow_data; |
|
|
|
|
save viso_data.mat viso_data; |
|
|
|
|