Browse Source

ekf2: rename BaroBiasEstimator -> BiasEstimator

main
bresch 3 years ago committed by Daniel Agar
parent
commit
f962399ba1
  1. 2
      src/modules/ekf2/CMakeLists.txt
  2. 2
      src/modules/ekf2/EKF/CMakeLists.txt
  3. 24
      src/modules/ekf2/EKF/bias_estimator.cpp
  4. 19
      src/modules/ekf2/EKF/bias_estimator.hpp
  5. 6
      src/modules/ekf2/EKF/ekf.h
  6. 2
      src/modules/ekf2/EKF2.cpp

2
src/modules/ekf2/CMakeLists.txt

@ -48,7 +48,7 @@ px4_add_module(
3600 3600
SRCS SRCS
EKF/airspeed_fusion.cpp EKF/airspeed_fusion.cpp
EKF/baro_bias_estimator.cpp EKF/bias_estimator.cpp
EKF/control.cpp EKF/control.cpp
EKF/covariance.cpp EKF/covariance.cpp
EKF/drag_fusion.cpp EKF/drag_fusion.cpp

2
src/modules/ekf2/EKF/CMakeLists.txt

@ -33,7 +33,7 @@
add_library(ecl_EKF add_library(ecl_EKF
airspeed_fusion.cpp airspeed_fusion.cpp
baro_bias_estimator.cpp bias_estimator.cpp
control.cpp control.cpp
covariance.cpp covariance.cpp
drag_fusion.cpp drag_fusion.cpp

24
src/modules/ekf2/EKF/baro_bias_estimator.cpp → src/modules/ekf2/EKF/bias_estimator.cpp

@ -32,14 +32,14 @@
****************************************************************************/ ****************************************************************************/
/** /**
* @file baro_bias_estimator.cpp * @file bias_estimator.cpp
* *
* @author Mathieu Bresciani <mathieu@auterion.com> * @author Mathieu Bresciani <mathieu@auterion.com>
*/ */
#include "baro_bias_estimator.hpp" #include "bias_estimator.hpp"
void BaroBiasEstimator::predict(const float dt) void BiasEstimator::predict(const float dt)
{ {
// State is constant // State is constant
// Predict state covariance only // Predict state covariance only
@ -62,12 +62,12 @@ void BaroBiasEstimator::predict(const float dt)
_status.bias_var = _state_var; _status.bias_var = _state_var;
} }
void BaroBiasEstimator::constrainStateVar() void BiasEstimator::constrainStateVar()
{ {
_state_var = math::constrain(_state_var, 1e-8f, _state_var_max); _state_var = math::constrain(_state_var, 1e-8f, _state_var_max);
} }
void BaroBiasEstimator::fuseBias(const float measurement, const float measurement_var) void BiasEstimator::fuseBias(const float measurement, const float measurement_var)
{ {
const float innov_var = _state_var + measurement_var; const float innov_var = _state_var + measurement_var;
const float innov = measurement - _state; const float innov = measurement - _state;
@ -85,28 +85,28 @@ void BaroBiasEstimator::fuseBias(const float measurement, const float measuremen
_status = packStatus(innov, innov_var, innov_test_ratio); _status = packStatus(innov, innov_var, innov_test_ratio);
} }
inline float BaroBiasEstimator::computeInnovTestRatio(const float innov, const float innov_var) const inline float BiasEstimator::computeInnovTestRatio(const float innov, const float innov_var) const
{ {
return innov * innov / (_gate_size * _gate_size * innov_var); return innov * innov / (_gate_size * _gate_size * innov_var);
} }
inline bool BaroBiasEstimator::isTestRatioPassing(const float innov_test_ratio) const inline bool BiasEstimator::isTestRatioPassing(const float innov_test_ratio) const
{ {
return innov_test_ratio < 1.f; return innov_test_ratio < 1.f;
} }
inline void BaroBiasEstimator::updateState(const float K, const float innov) inline void BiasEstimator::updateState(const float K, const float innov)
{ {
_state = math::constrain(_state + K * innov, -_state_max, _state_max); _state = math::constrain(_state + K * innov, -_state_max, _state_max);
} }
inline void BaroBiasEstimator::updateStateCovariance(const float K) inline void BiasEstimator::updateStateCovariance(const float K)
{ {
_state_var -= K * _state_var; _state_var -= K * _state_var;
constrainStateVar(); constrainStateVar();
} }
inline void BaroBiasEstimator::updateOffsetDetection(const float innov, const float innov_test_ratio) inline void BiasEstimator::updateOffsetDetection(const float innov, const float innov_test_ratio)
{ {
const float signed_innov_test_ratio = matrix::sign(innov) * innov_test_ratio; const float signed_innov_test_ratio = matrix::sign(innov) * innov_test_ratio;
_signed_innov_test_ratio_lpf.update(math::constrain(signed_innov_test_ratio, -1.f, 1.f)); _signed_innov_test_ratio_lpf.update(math::constrain(signed_innov_test_ratio, -1.f, 1.f));
@ -121,7 +121,7 @@ inline void BaroBiasEstimator::updateOffsetDetection(const float innov, const fl
} }
} }
inline bool BaroBiasEstimator::isOffsetDetected() const inline bool BiasEstimator::isOffsetDetected() const
{ {
// There is an offset in the estimate if the average of innovation is statistically too large // There is an offset in the estimate if the average of innovation is statistically too large
// or if the sign of the innovation is constantly the same // or if the sign of the innovation is constantly the same
@ -130,7 +130,7 @@ inline bool BaroBiasEstimator::isOffsetDetected() const
|| (_time_since_last_negative_innov > _innov_sequence_monitnoring_time_constant); || (_time_since_last_negative_innov > _innov_sequence_monitnoring_time_constant);
} }
inline BaroBiasEstimator::status BaroBiasEstimator::packStatus(const float innov, const float innov_var, inline BiasEstimator::status BiasEstimator::packStatus(const float innov, const float innov_var,
const float innov_test_ratio) const const float innov_test_ratio) const
{ {
// Send back status for logging // Send back status for logging

19
src/modules/ekf2/EKF/baro_bias_estimator.hpp → src/modules/ekf2/EKF/bias_estimator.hpp

@ -32,32 +32,28 @@
****************************************************************************/ ****************************************************************************/
/** /**
* @file baro_bias_estimator.hpp * @file bias_estimator.hpp
* @brief Implementation of a single-state baro bias estimator * @brief Implementation of a single-state bias estimator
* *
* state: baro bias (in meters) * state: bias
* *
* The state is noise driven: Transition matrix A = 1 * The state is noise driven: Transition matrix A = 1
* x[k+1] = Ax[k] + v with v ~ N(0, Q) * x[k+1] = Ax[k] + v with v ~ N(0, Q)
* y[k] = x[k] + w with w ~ N(0, R) * y[k] = x[k] + w with w ~ N(0, R)
* *
* The difference between the current barometric altitude and another absolute
* reference (e.g.: GNSS altitude) is used as a bias measurement.
*
* During the measurment update step, the Normalized Innovation Squared (NIS) is checked * During the measurment update step, the Normalized Innovation Squared (NIS) is checked
* and the measurement is rejected if larger than the gate size. * and the measurement is rejected if larger than the gate size.
* *
* @author Mathieu Bresciani <mathieu@auterion.com> * @author Mathieu Bresciani <mathieu@auterion.com>
*/ */
#ifndef EKF_BARO_BIAS_ESTIMATOR_HPP #pragma once
#define EKF_BARO_BIAS_ESTIMATOR_HPP
#include <matrix/math.hpp> #include <matrix/math.hpp>
#include <mathlib/mathlib.h> #include <mathlib/mathlib.h>
#include <mathlib/math/filter/AlphaFilter.hpp> #include <mathlib/math/filter/AlphaFilter.hpp>
class BaroBiasEstimator class BiasEstimator
{ {
public: public:
struct status { struct status {
@ -68,8 +64,8 @@ public:
float innov_test_ratio; float innov_test_ratio;
}; };
BaroBiasEstimator() = default; BiasEstimator() = default;
~BaroBiasEstimator() = default; ~BiasEstimator() = default;
void predict(float dt); void predict(float dt);
void fuseBias(float measurement, float measurement_var); void fuseBias(float measurement, float measurement_var);
@ -127,4 +123,3 @@ private:
static constexpr float _innov_sequence_monitnoring_time_constant{10.f}; ///< in seconds static constexpr float _innov_sequence_monitnoring_time_constant{10.f}; ///< in seconds
static constexpr float _process_var_boost_gain{1.0e3f}; static constexpr float _process_var_boost_gain{1.0e3f};
}; };
#endif // !EKF_BARO_BIAS_ESTIMATOR_HPP

6
src/modules/ekf2/EKF/ekf.h

@ -46,7 +46,7 @@
#include "estimator_interface.h" #include "estimator_interface.h"
#include "EKFGSF_yaw.h" #include "EKFGSF_yaw.h"
#include "baro_bias_estimator.hpp" #include "bias_estimator.hpp"
#include <uORB/topics/estimator_aid_source_1d.h> #include <uORB/topics/estimator_aid_source_1d.h>
#include <uORB/topics/estimator_aid_source_2d.h> #include <uORB/topics/estimator_aid_source_2d.h>
@ -345,7 +345,7 @@ public:
// Returns true if the output of the yaw emergency estimator can be used for a reset // Returns true if the output of the yaw emergency estimator can be used for a reset
bool isYawEmergencyEstimateAvailable() const; bool isYawEmergencyEstimateAvailable() const;
const BaroBiasEstimator::status &getBaroBiasEstimatorStatus() const { return _baro_b_est.getStatus(); } const BiasEstimator::status &getBaroBiasEstimatorStatus() const { return _baro_b_est.getStatus(); }
const auto &aid_src_airspeed() const { return _aid_src_airspeed; } const auto &aid_src_airspeed() const { return _aid_src_airspeed; }
@ -1042,7 +1042,7 @@ private:
// yaw estimator instance // yaw estimator instance
EKFGSF_yaw _yawEstimator{}; EKFGSF_yaw _yawEstimator{};
BaroBiasEstimator _baro_b_est{}; BiasEstimator _baro_b_est{};
int64_t _ekfgsf_yaw_reset_time{0}; ///< timestamp of last emergency yaw reset (uSec) int64_t _ekfgsf_yaw_reset_time{0}; ///< timestamp of last emergency yaw reset (uSec)
uint8_t _ekfgsf_yaw_reset_count{0}; // number of times the yaw has been reset to the EKF-GSF estimate uint8_t _ekfgsf_yaw_reset_count{0}; // number of times the yaw has been reset to the EKF-GSF estimate

2
src/modules/ekf2/EKF2.cpp

@ -680,7 +680,7 @@ void EKF2::PublishAttitude(const hrt_abstime &timestamp)
void EKF2::PublishBaroBias(const hrt_abstime &timestamp) void EKF2::PublishBaroBias(const hrt_abstime &timestamp)
{ {
if (_device_id_baro != 0) { if (_device_id_baro != 0) {
const BaroBiasEstimator::status &status = _ekf.getBaroBiasEstimatorStatus(); const BiasEstimator::status &status = _ekf.getBaroBiasEstimatorStatus();
if (fabsf(status.bias - _last_baro_bias_published) > 0.001f) { if (fabsf(status.bias - _last_baro_bias_published) > 0.001f) {
estimator_baro_bias_s baro_bias{}; estimator_baro_bias_s baro_bias{};

Loading…
Cancel
Save