|
|
|
@ -62,94 +62,97 @@ int16_t_from_bytes(uint8_t bytes[])
@@ -62,94 +62,97 @@ int16_t_from_bytes(uint8_t bytes[])
|
|
|
|
|
|
|
|
|
|
void rot2quat(const float R[9], float Q[4]) |
|
|
|
|
{ |
|
|
|
|
float q0_2; |
|
|
|
|
float q1_2; |
|
|
|
|
float q2_2; |
|
|
|
|
float q3_2; |
|
|
|
|
int32_t idx; |
|
|
|
|
|
|
|
|
|
/* conversion of rotation matrix to quaternion
|
|
|
|
|
* choose the largest component to begin with */ |
|
|
|
|
q0_2 = (((1.0F + R[0]) + R[4]) + R[8]) / 4.0F; |
|
|
|
|
q1_2 = (((1.0F + R[0]) - R[4]) - R[8]) / 4.0F; |
|
|
|
|
q2_2 = (((1.0F - R[0]) + R[4]) - R[8]) / 4.0F; |
|
|
|
|
q3_2 = (((1.0F - R[0]) - R[4]) + R[8]) / 4.0F; |
|
|
|
|
|
|
|
|
|
idx = 0; |
|
|
|
|
|
|
|
|
|
if (q0_2 < q1_2) { |
|
|
|
|
q0_2 = q1_2; |
|
|
|
|
|
|
|
|
|
idx = 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (q0_2 < q2_2) { |
|
|
|
|
q0_2 = q2_2; |
|
|
|
|
idx = 2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (q0_2 < q3_2) { |
|
|
|
|
q0_2 = q3_2; |
|
|
|
|
idx = 3; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
q0_2 = sqrtf(q0_2); |
|
|
|
|
|
|
|
|
|
/* solve for the remaining three components */ |
|
|
|
|
if (idx == 0) { |
|
|
|
|
q1_2 = q0_2; |
|
|
|
|
q2_2 = (R[5] - R[7]) / 4.0F / q0_2; |
|
|
|
|
q3_2 = (R[6] - R[2]) / 4.0F / q0_2; |
|
|
|
|
q0_2 = (R[1] - R[3]) / 4.0F / q0_2; |
|
|
|
|
} else if (idx == 1) { |
|
|
|
|
q2_2 = q0_2; |
|
|
|
|
q1_2 = (R[5] - R[7]) / 4.0F / q0_2; |
|
|
|
|
q3_2 = (R[3] + R[1]) / 4.0F / q0_2; |
|
|
|
|
q0_2 = (R[6] + R[2]) / 4.0F / q0_2; |
|
|
|
|
} else if (idx == 2) { |
|
|
|
|
q3_2 = q0_2; |
|
|
|
|
q1_2 = (R[6] - R[2]) / 4.0F / q0_2; |
|
|
|
|
q2_2 = (R[3] + R[1]) / 4.0F / q0_2; |
|
|
|
|
q0_2 = (R[7] + R[5]) / 4.0F / q0_2; |
|
|
|
|
} else { |
|
|
|
|
q1_2 = (R[1] - R[3]) / 4.0F / q0_2; |
|
|
|
|
q2_2 = (R[6] + R[2]) / 4.0F / q0_2; |
|
|
|
|
q3_2 = (R[7] + R[5]) / 4.0F / q0_2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* return values */ |
|
|
|
|
Q[0] = q1_2; |
|
|
|
|
Q[1] = q2_2; |
|
|
|
|
Q[2] = q3_2; |
|
|
|
|
Q[3] = q0_2; |
|
|
|
|
float q0_2; |
|
|
|
|
float q1_2; |
|
|
|
|
float q2_2; |
|
|
|
|
float q3_2; |
|
|
|
|
int32_t idx; |
|
|
|
|
|
|
|
|
|
/* conversion of rotation matrix to quaternion
|
|
|
|
|
* choose the largest component to begin with */ |
|
|
|
|
q0_2 = (((1.0F + R[0]) + R[4]) + R[8]) / 4.0F; |
|
|
|
|
q1_2 = (((1.0F + R[0]) - R[4]) - R[8]) / 4.0F; |
|
|
|
|
q2_2 = (((1.0F - R[0]) + R[4]) - R[8]) / 4.0F; |
|
|
|
|
q3_2 = (((1.0F - R[0]) - R[4]) + R[8]) / 4.0F; |
|
|
|
|
|
|
|
|
|
idx = 0; |
|
|
|
|
|
|
|
|
|
if (q0_2 < q1_2) { |
|
|
|
|
q0_2 = q1_2; |
|
|
|
|
|
|
|
|
|
idx = 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (q0_2 < q2_2) { |
|
|
|
|
q0_2 = q2_2; |
|
|
|
|
idx = 2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (q0_2 < q3_2) { |
|
|
|
|
q0_2 = q3_2; |
|
|
|
|
idx = 3; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
q0_2 = sqrtf(q0_2); |
|
|
|
|
|
|
|
|
|
/* solve for the remaining three components */ |
|
|
|
|
if (idx == 0) { |
|
|
|
|
q1_2 = q0_2; |
|
|
|
|
q2_2 = (R[5] - R[7]) / 4.0F / q0_2; |
|
|
|
|
q3_2 = (R[6] - R[2]) / 4.0F / q0_2; |
|
|
|
|
q0_2 = (R[1] - R[3]) / 4.0F / q0_2; |
|
|
|
|
|
|
|
|
|
} else if (idx == 1) { |
|
|
|
|
q2_2 = q0_2; |
|
|
|
|
q1_2 = (R[5] - R[7]) / 4.0F / q0_2; |
|
|
|
|
q3_2 = (R[3] + R[1]) / 4.0F / q0_2; |
|
|
|
|
q0_2 = (R[6] + R[2]) / 4.0F / q0_2; |
|
|
|
|
|
|
|
|
|
} else if (idx == 2) { |
|
|
|
|
q3_2 = q0_2; |
|
|
|
|
q1_2 = (R[6] - R[2]) / 4.0F / q0_2; |
|
|
|
|
q2_2 = (R[3] + R[1]) / 4.0F / q0_2; |
|
|
|
|
q0_2 = (R[7] + R[5]) / 4.0F / q0_2; |
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
|
q1_2 = (R[1] - R[3]) / 4.0F / q0_2; |
|
|
|
|
q2_2 = (R[6] + R[2]) / 4.0F / q0_2; |
|
|
|
|
q3_2 = (R[7] + R[5]) / 4.0F / q0_2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* return values */ |
|
|
|
|
Q[0] = q1_2; |
|
|
|
|
Q[1] = q2_2; |
|
|
|
|
Q[2] = q3_2; |
|
|
|
|
Q[3] = q0_2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void quat2rot(const float Q[4], float R[9]) |
|
|
|
|
{ |
|
|
|
|
float q0_2; |
|
|
|
|
float q1_2; |
|
|
|
|
float q2_2; |
|
|
|
|
float q3_2; |
|
|
|
|
|
|
|
|
|
memset(&R[0], 0, 9U * sizeof(float)); |
|
|
|
|
|
|
|
|
|
q0_2 = Q[0] * Q[0]; |
|
|
|
|
q1_2 = Q[1] * Q[1]; |
|
|
|
|
q2_2 = Q[2] * Q[2]; |
|
|
|
|
q3_2 = Q[3] * Q[3]; |
|
|
|
|
|
|
|
|
|
R[0] = ((q0_2 + q1_2) - q2_2) - q3_2; |
|
|
|
|
R[3] = 2.0F * (Q[1] * Q[2] - Q[0] * Q[3]); |
|
|
|
|
R[6] = 2.0F * (Q[1] * Q[3] + Q[0] * Q[2]); |
|
|
|
|
R[1] = 2.0F * (Q[1] * Q[2] + Q[0] * Q[3]); |
|
|
|
|
R[4] = ((q0_2 + q2_2) - q1_2) - q3_2; |
|
|
|
|
R[7] = 2.0F * (Q[2] * Q[3] - Q[0] * Q[1]); |
|
|
|
|
R[2] = 2.0F * (Q[1] * Q[3] - Q[0] * Q[2]); |
|
|
|
|
R[5] = 2.0F * (Q[2] * Q[3] + Q[0] * Q[1]); |
|
|
|
|
R[8] = ((q0_2 + q3_2) - q1_2) - q2_2; |
|
|
|
|
float q0_2; |
|
|
|
|
float q1_2; |
|
|
|
|
float q2_2; |
|
|
|
|
float q3_2; |
|
|
|
|
|
|
|
|
|
memset(&R[0], 0, 9U * sizeof(float)); |
|
|
|
|
|
|
|
|
|
q0_2 = Q[0] * Q[0]; |
|
|
|
|
q1_2 = Q[1] * Q[1]; |
|
|
|
|
q2_2 = Q[2] * Q[2]; |
|
|
|
|
q3_2 = Q[3] * Q[3]; |
|
|
|
|
|
|
|
|
|
R[0] = ((q0_2 + q1_2) - q2_2) - q3_2; |
|
|
|
|
R[3] = 2.0F * (Q[1] * Q[2] - Q[0] * Q[3]); |
|
|
|
|
R[6] = 2.0F * (Q[1] * Q[3] + Q[0] * Q[2]); |
|
|
|
|
R[1] = 2.0F * (Q[1] * Q[2] + Q[0] * Q[3]); |
|
|
|
|
R[4] = ((q0_2 + q2_2) - q1_2) - q3_2; |
|
|
|
|
R[7] = 2.0F * (Q[2] * Q[3] - Q[0] * Q[1]); |
|
|
|
|
R[2] = 2.0F * (Q[1] * Q[3] - Q[0] * Q[2]); |
|
|
|
|
R[5] = 2.0F * (Q[2] * Q[3] + Q[0] * Q[1]); |
|
|
|
|
R[8] = ((q0_2 + q3_2) - q1_2) - q2_2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float get_air_density(float static_pressure, float temperature_celsius) |
|
|
|
|
{ |
|
|
|
|
return static_pressure/(air_gas_constant * (temperature_celsius + absolute_null_kelvin)); |
|
|
|
|
return static_pressure / (air_gas_constant * (temperature_celsius + absolute_null_kelvin)); |
|
|
|
|
} |
|
|
|
|