Browse Source

add tests for Bezier and Golden Section Search libraries

sbg
Dennis Mannhart 7 years ago
parent
commit
fe48e06f9d
  1. 2
      src/systemcmds/tests/CMakeLists.txt
  2. 240
      src/systemcmds/tests/test_bezierQuad.cpp
  3. 171
      src/systemcmds/tests/test_search_min.cpp
  4. 2
      src/systemcmds/tests/tests_main.c
  5. 2
      src/systemcmds/tests/tests_main.h

2
src/systemcmds/tests/CMakeLists.txt

@ -34,6 +34,7 @@ @@ -34,6 +34,7 @@
set(srcs
test_adc.c
test_autodeclination.cpp
test_bezierQuad.cpp
test_bson.c
test_conv.cpp
test_dataman.c
@ -60,6 +61,7 @@ set(srcs @@ -60,6 +61,7 @@ set(srcs
test_perf.c
test_ppm_loopback.c
test_rc.c
test_search_min.cpp
test_sensors.c
test_servo.c
test_sleep.c

240
src/systemcmds/tests/test_bezierQuad.cpp

@ -0,0 +1,240 @@ @@ -0,0 +1,240 @@
#include <unit_test.h>
#include <float.h>
#include <stdlib.h>
#include <time.h>
#include "../../lib/bezier/BezierQuad.hpp"
class BezierQuadTest : public UnitTest
{
public:
virtual bool run_tests();
private:
bool _get_states_from_time();
bool _get_arc_length();
bool _set_bez_from_vel();
float random(float min, float max);
};
bool BezierQuadTest::run_tests()
{
ut_run_test(_get_states_from_time);
ut_run_test(_get_arc_length);
ut_run_test(_set_bez_from_vel);
return (_tests_failed == 0);
}
bool BezierQuadTest::_get_states_from_time()
{
// symmetric around 0
matrix::Vector3f pt0(-0.5f, 0.0f, 0.0f);
matrix::Vector3f ctrl(0.0f, 0.5f, 0.0f);
matrix::Vector3f pt1(0.5f, 0.0f, 0.0f);
// create bezier with default t = [0,1]
bezier::BezierQuadf bz(pt0, ctrl, pt1);
matrix::Vector3f pos, vel, acc;
float precision = 0.00001;
// states at time = 0
bz.getStates(pos, vel, acc, 0.0f);
ut_compare_float("pos[0] not equal pt0[0]", pos(0), pt0(0), precision);
ut_compare_float("pos[1] not equal pt0[1]", pos(1), pt0(1), precision);
ut_compare_float("pos[2] not equal pt0[2]", pos(2), pt0(2), precision);
ut_compare_float("slope not equal 1", vel(0), 1.0f, precision);
ut_compare_float("slope not equal 1", vel(1), 1.0f, precision);
ut_compare_float("slope not equal 0", vel(2), 0.0f, precision);
ut_compare_float("acc not equal 0", acc(0), 0.0f, precision);
ut_compare_float("acc not equal 1", acc(1), -2.0f, precision);
ut_compare_float("acc not equal 0", acc(2), 0.0f, precision);
// states at time = 1
bz.getStates(pos, vel, acc, 1.0f);
ut_compare_float("pos[0] not equal pt1[0]", pos(0), pt1(0), precision);
ut_compare_float("pos[1] not equal pt1[1]", pos(1), pt1(1), precision);
ut_compare_float("pos[2] not equal pt1[2]", pos(2), pt1(2), precision);
ut_compare_float("slope not equal 1", vel(0), 1.0f, precision);
ut_compare_float("slope not equal -1", vel(1), -1.0f, precision);
ut_compare_float("slope not equal 0", vel(2), 0.0f, precision);
ut_compare_float("acc not equal 0", acc(0), 0.0f, precision);
ut_compare_float("acc not equal 1", acc(1), -2.0f, precision);
ut_compare_float("acc not equal 0", acc(2), 0.0f, precision);
// states at time = 0.5
bz.getStates(pos, vel, acc, 0.50f);
// pos must be equal to ctrl(0) and lower than ctrl(1)
ut_compare_float("pos[0] not equal ctrl[0]", pos(0), ctrl(0), precision);
ut_assert_true(pos(1) < ctrl(1));
ut_compare_float("slope not equal 1", vel(0), 1.0f, precision);
ut_compare_float("slope not equal -1", vel(1), 0.0f, precision);
ut_compare_float("slope not equal 0", vel(2), 0.0f, precision);
ut_compare_float("acc not equal 0", acc(0), 0.0f, precision);
ut_compare_float("acc not equal -2", acc(1), -2.0f, precision);
ut_compare_float("acc not equal 0", acc(2), 0.0f, precision);
// acceleration
pt0 = matrix::Vector3f(0.0f, 0.0f, 0.0f);
ctrl = matrix::Vector3f(0.0f, 0.0f, 0.0f);
pt1 = matrix::Vector3f(1.0f, 0.0f, 0.0f);
// create bezier with default t = [0,1]
bz.setBezier(pt0, ctrl, pt1, 1.0f);
// states at time = 0.0
bz.getStates(pos, vel, acc, 0.0f);
ut_compare_float("pos[0] not equal pt0[0]", pos(0), pt0(0), precision);
ut_compare_float("pos[1] not equal pt0[1]", pos(1), pt0(1), precision);
ut_compare_float("pos[2] not equal pt0[2]", pos(2), pt0(2), precision);
ut_compare_float("slope not equal 0", vel(0), 0.0f, precision);
ut_compare_float("slope not equal 0", vel(1), 0.0f, precision);
ut_compare_float("slope not equal 0", vel(2), 0.0f, precision);
ut_compare_float("acc not equal 2", acc(0), 2.0f, precision);
ut_compare_float("acc not equal 0", acc(1), 0.0f, precision);
ut_compare_float("acc not equal 0", acc(2), 0.0f, precision);
// states at time = 1.0
bz.getStates(pos, vel, acc, 1.0f);
ut_compare_float("pos[0] not equal pt1[0]", pos(0), pt1(0), precision);
ut_compare_float("pos[1] not equal pt1[1]", pos(1), pt1(1), precision);
ut_compare_float("pos[2] not equal pt1[2]", pos(2), pt1(2), precision);
ut_compare_float("slope not equal 2", vel(0), 2.0f, precision);
ut_compare_float("slope not equal 0", vel(1), 0.0f, precision);
ut_compare_float("slope not equal 0", vel(2), 0.0f, precision);
ut_compare_float("acc not equal 2", acc(0), 2.0f, precision);
ut_compare_float("acc not equal 0", acc(1), 0.0f, precision);
ut_compare_float("acc not equal 0", acc(2), 0.0f, precision);
// states at time = 0.5
bz.getStates(pos, vel, acc, 0.5f);
ut_compare_float("slope not equal 1", vel(0), 1.0f, precision);
ut_compare_float("slope not equal 0", vel(1), 0.0f, precision);
ut_compare_float("slope not equal 0", vel(2), 0.0f, precision);
ut_compare_float("acc not equal 2", acc(0), 2.0f, precision);
ut_compare_float("acc not equal 0", acc(1), 0.0f, precision);
ut_compare_float("acc not equal 0", acc(2), 0.0f, precision);
return true;
}
bool BezierQuadTest::_get_arc_length()
{
// create random numbers
srand(0); // choose a constant to make it deterministic
float min = -50.f;
float max = 50.f;
float resolution = 0.1f;
matrix::Vector3f pt0, pt1, ctrl;
float duration, arc_length, triangle_length, straigth_length;
float T = 100.0f;
// loop trough different control points 100x and check if arc_length is in the expected range
for (int i = 0; i < 100 ; i++) {
// random bezier point
pt0 = matrix::Vector3f(random(min, max), random(min, max), random(min, max));
pt1 = matrix::Vector3f(random(min, max), random(min, max), random(min, max));
ctrl = matrix::Vector3f(random(min, max), random(min, max), random(min, max));
// use for each test a new duration
duration = random(0.0f, T);
// create bezier
bezier::BezierQuadf bz(pt0, ctrl, pt1, duration);
// compute arc length, triangle length and straigh length
arc_length = bz.getArcLength(resolution);
triangle_length = (ctrl - pt0).length() + (pt1 - ctrl).length();
straigth_length = (pt1 - pt0).length();
// we also compute length from going point to point and add segment
float time_increment = duration / T;
float t = 0.0f + time_increment;
matrix::Vector3f p0 = pt0;
float sum_segments = 0.0f;
for (int s = 0; s < (int)T; s++) {
matrix::Vector3f nextpt = bz.getPoint(t);
sum_segments = (nextpt - p0).length() + sum_segments;
p0 = bz.getPoint(t);
t = t + time_increment;
}
// test comparisons
ut_assert_true((triangle_length >= arc_length) && (arc_length >= straigth_length)
&& (fabsf(arc_length - sum_segments) < 1.f));
}
return true;
}
bool BezierQuadTest::_set_bez_from_vel()
{
// create random numbers
srand(100); // choose a constant to make it deterministic
float low = -50.0f;
float max = 50.0f;
float precision = 0.001f;
for (int i = 0; i < 20; i++) {
// set velocity
matrix::Vector3f ctrl(random(low, max), random(low, max), random(low, max));
matrix::Vector3f vel0(random(low, max), random(low, max), random(low, max));
matrix::Vector3f vel1(random(low, max), random(low, max), random(low, max));
float duration = random(0.0f, 100.0f);
bezier::BezierQuadf bz;;
bz.setBezFromVel(ctrl, vel0, vel1, duration);
// get velocity back
matrix::Vector3f v0 = bz.getVelocity(0.0f);
matrix::Vector3f v1 = bz.getVelocity(duration);
ut_compare_float("", vel0(0), v0(0), precision);
ut_compare_float("", vel1(0), v1(0), precision);
ut_compare_float("", vel0(1), v0(1), precision);
ut_compare_float("", vel1(1), v1(1), precision);
ut_compare_float("", vel0(2), v0(2), precision);
ut_compare_float("", vel1(2), v1(2), precision);
}
return true;
}
float BezierQuadTest::random(float min, float max)
{
float s = rand() / (float)RAND_MAX;
return (min + s * (max - min));
}
ut_declare_test_c(test_bezierQuad, BezierQuadTest)

171
src/systemcmds/tests/test_search_min.cpp

@ -0,0 +1,171 @@ @@ -0,0 +1,171 @@
#include <unit_test.h>
#include <float.h>
#include "../../lib/mathlib/math/SearchMin.hpp"
// linear function
float _linear_function(float x)
{
float slope = 2.0f;
return slope * x - 1.4f;
}
//linear function without slope
float _linear_function_flat(float x)
{
return 1.4f;
}
// quadratic function with min at 2
float _quadratic_function(float x)
{
return ((x - 2.0f) * (x - 2.0f) + 3.0f);
}
class SearchMinTest : public UnitTest
{
public:
virtual bool run_tests();
private:
bool _init_inputs();
bool _init_inputs_flipped();
bool _init_inputs_negative();
bool _init_tol_larger_than_range();
bool _init_tol_larger_than_range_flipped();
bool _no_extremum();
};
bool SearchMinTest::run_tests()
{
ut_run_test(_init_inputs);
ut_run_test(_init_inputs_flipped);
ut_run_test(_init_inputs_negative);
ut_run_test(_init_tol_larger_than_range);
ut_run_test(_init_tol_larger_than_range_flipped);
ut_run_test(_no_extremum);
return (_tests_failed == 0);
}
bool SearchMinTest::_init_inputs()
{
float a = 1.0f;
float b = 4.0f;
float tol = 0.001f;
float (*fun)(float);
float (*fun2)(float);
fun = &_linear_function;
fun2 = &_quadratic_function;
float opt = math::goldensection(a, b, fun, tol);
float opt2 = math::goldensection(a, b, fun2, tol);
PX4_INFO("opt2: %.5f", (double)opt2);
ut_assert("linear function opt not equal min ", fabsf(opt - a) <= (tol * 2.0f));
ut_assert("quad function opt not equal min ", fabsf(opt2 - 2.0f) <= (tol * 2.0f));
return true;
}
bool SearchMinTest::_init_inputs_flipped()
{
float a = 4.0f;
float b = 1.0f;
float tol = 0.001f;
float (*fun)(float);
float (*fun2)(float);
fun = &_linear_function;
fun2 = &_quadratic_function;
float opt = math::goldensection(a, b, fun, tol);
float opt2 = math::goldensection(a, b, fun2, tol);
ut_assert("linear function opt not equal min", fabsf(opt - b) <= (tol * 2.0f));
ut_assert("quad function opt not equal min ", fabsf(opt2 - 2.0f) <= (tol * 2.0f));
return true;
}
bool SearchMinTest::_init_inputs_negative()
{
float a = -4.0f;
float b = -2.0f;
float tol = 0.001f;
float (*fun)(float);
float (*fun2)(float);
fun = &_linear_function;
fun2 = &_quadratic_function;
float opt = math::goldensection(a, b, fun, tol);
float opt2 = math::goldensection(a, b, fun2, tol);
ut_assert("linear function opt not equal min", fabsf(opt - a) <= (tol * 2.0f));
ut_assert("quad function opt not equal min ", fabsf(opt2 - b) <= (tol * 2.0f));
return true;
}
bool SearchMinTest::_init_tol_larger_than_range()
{
float a = 1.0f;
float b = 4.0f;
float tol = 6.0f;
float (*fun)(float);
float (*fun2)(float);
fun = &_linear_function;
fun2 = &_quadratic_function;
float opt = math::goldensection(a, b, fun, tol);
float opt2 = math::goldensection(a, b, fun2, tol);
ut_assert("linear function opt not equal min", fabsf(opt - (b + a) / 2.0f) <= (0.001f * 2.0f));
ut_assert("quad function opt not equal min ", fabsf(opt2 - (b + a) / 2.0f) <= (0.001f * 2.0f));
return true;
}
bool SearchMinTest::_init_tol_larger_than_range_flipped()
{
float a = 4.0f;
float b = 1.0f;
float tol = 6.0f;
float (*fun)(float);
float (*fun2)(float);
fun = &_linear_function;
fun2 = &_quadratic_function;
float opt = math::goldensection(a, b, fun, tol);
float opt2 = math::goldensection(a, b, fun2, tol);
ut_assert("linear function opt not equal min", fabsf(opt - (b + a) / 2.0f) <= (0.001f * 2.0f));
ut_assert("quad function opt not equal min ", fabsf(opt2 - (b + a) / 2.0f) <= (0.001f * 2.0f));
return true;
}
bool SearchMinTest::_no_extremum()
{
float a = 1.f;
float b = 4.0f;
float tol = 0.001f;
float (*fun)(float);
fun = &_linear_function_flat;
float opt = math::goldensection(a, b, fun, tol);
ut_assert("linear function function opt not equal min", fabsf(fun(opt) - fun(b)) <= (tol));
return true;
}
ut_declare_test_c(test_search_min, SearchMinTest)

2
src/systemcmds/tests/tests_main.c

@ -102,6 +102,7 @@ const struct { @@ -102,6 +102,7 @@ const struct {
{"mixer", test_mixer, OPT_NOJIGTEST},
{"autodeclination", test_autodeclination, 0},
{"bezier", test_bezierQuad, 0},
{"bson", test_bson, 0},
{"conv", test_conv, 0},
{"dataman", test_dataman, OPT_NOJIGTEST | OPT_NOALLTEST},
@ -125,6 +126,7 @@ const struct { @@ -125,6 +126,7 @@ const struct {
{"ppm", test_ppm, OPT_NOJIGTEST | OPT_NOALLTEST},
{"ppm_loopback", test_ppm_loopback, OPT_NOALLTEST},
{"rc", test_rc, OPT_NOJIGTEST | OPT_NOALLTEST},
{"search_min", test_search_min, 0},
{"servo", test_servo, OPT_NOJIGTEST | OPT_NOALLTEST},
{"sleep", test_sleep, OPT_NOJIGTEST},
{"tone", test_tone, 0},

2
src/systemcmds/tests/tests_main.h

@ -55,6 +55,7 @@ __BEGIN_DECLS @@ -55,6 +55,7 @@ __BEGIN_DECLS
extern int test_adc(int argc, char *argv[]);
extern int test_autodeclination(int argc, char *argv[]);
extern int test_hysteresis(int argc, char *argv[]);
extern int test_bezierQuad(int argc, char *argv[]);
extern int test_bson(int argc, char *argv[]);
extern int test_conv(int argc, char *argv[]);
extern int test_dataman(int argc, char *argv[]);
@ -80,6 +81,7 @@ extern int test_perf(int argc, char *argv[]); @@ -80,6 +81,7 @@ extern int test_perf(int argc, char *argv[]);
extern int test_ppm(int argc, char *argv[]);
extern int test_ppm_loopback(int argc, char *argv[]);
extern int test_rc(int argc, char *argv[]);
extern int test_search_min(int argc, char *argv[]);
extern int test_sensors(int argc, char *argv[]);
extern int test_servo(int argc, char *argv[]);
extern int test_sleep(int argc, char *argv[]);

Loading…
Cancel
Save