I don't think we should be broadcasting by default as we haven't done
that in the past. This suddenly spams the network with a lot of
messages, and leads to confusing situations in offices where there are
multiple PX4 SITL and QGC intances are open.
Previously, we did not set a remote port which meant that the default
remote port 14550 was used. This meant that the mavlink instance
talking to the gimbal was interfering with the connection to the ground
station (on 14550).
This is a hack to make sure the messages from the gimbal arrive at other
links (e.g. the ground station). It means that the gimbal does not get
flooded with all other messages that would get forwarded but messages
from the gimbal will still make it through.
- ekf2 can now run in multi-instance mode (currently up to 9 instances)
- in multi mode all estimates are published to alternate topics (eg estimator_attitude instead of vehicle_attitude)
- new ekf2 selector runs in multi-instance mode to monitor and compare all instances, selecting a primary (eg N x estimator_attitude => vehicle_attitude)
- sensors module accel & gyro inconsistency checks are now relative to the mean of all instances, rather than the current primary (when active ekf2 selector is responsible for choosing primary accel & gyro)
- existing consumers of estimator_status must check estimator_selector_status to select current primary instance status
- ekf2 single instance mode is still fully supported and the default
Co-authored-by: Paul Riseborough <gncsolns@gmail.com>
It loads the battery parameters but then overwrites them
with hardcoded values and it breaks the ModuleParams
parent/child hierarchy. Both is undesired.
because we need to have SITL simulation as realistic as possible
compared to a real flight with default settings such that we
either fix the problems or adjust the defaults already in SITL testing.
- avoids the need for ekf2_timestamp publications by q and lpe
- adds logger to the lockstep cycle and makes it poll on ekf2_timestamps
or vehicle_attitude. This avoids dropped samples (required for replay).
- IMU integration move from drivers (PX4Accelerometer/PX4Gyroscope) to sensors/vehicle_imu
- sensors: voted_sensors_update now consumes vehicle_imu
- delete sensor_accel_integrated, sensor_gyro_integrated
- merge sensor_accel_status/sensor_gyro_status into vehicle_imu_status
- sensors status output minor improvements (ordering, whitespace, show selected sensor device id and instance)
Before #14212 the velocity control gains used in the multicopter
position controller were defined as a scale between velocity error in
one axis (or it's integral and derivative respectively) and the unit
thrust vector. The problem with this is that the normalization of the
unit thrust vector changes per vehicle or even vehicle configuration
as 0 and 100% thrust get a different physical response. That's why
the gains are now defined as scale between velocity error
(integral/derivative) and the output acceleration in m/s².
- skip avionics rail voltage check when USB connected
- skip forced reboot on USB disconnect if circuit breaker set
- avionics voltage preflight check don't silently fail if system_power unavailble
- explicitly set supply check circuit breaker (CBRK_SUPPLY_CHK)
The implementation before this change had two timeouts, a hard-coded
timeout of 0.5 seconds as well as a by param configurable timeout with
certain failsafe actions set.
This change aims to fix two problems:
1. The hard-coded offboard timeout can be triggered easily with sped up
lockstep simulation. Since i t is hard-coded it can't be adapted to
the speed factor.
2. The offboard signal can time out but no action will be taken just
yet. This means we end up in an in-between stage where no warning or
failsafe action has happened yet, even though certain flags are set
to a timeout state.
This patch aims to fix this by unifying the two timeouts to the existing
configurable param. The convoluted double timeout logic is replaced by a
simple hysteresis.
For anyone that has previously not changed the default timeout param (0),
the param will now be changed to 0.5 seconds which reflects the
previously hardcoded time. For anyone with a specific timeout
configured, the behaviour should remain the same.
Also, going forward, timeouts lower than 0.5 seconds should be possible.
Sometimes in CI for VTOL we saw disarms before the spoolup and ramp were
over and the takeoff would actually happen. By raising the auto-disarm
time we should be able to work around this and get CI less flaky.