Remove duplicate checking for dead reckoning and consolidate into a single function.
Use separate timers to check for start of dead reckoning and check when dead reckoning has been performed for too long for the nav solution to be valid.
Allow the timeout for validity reporting to be adjusted externally.
Separate external reporting of dead reckoning from internal checks.
* EKF: Move optical flow specific state reset to helper functions
* EKF: Ensure loss of optical flow aiding is handled correctly
If data is only source of aiding and has been rejected for too long - reset using flow data as a velocity reference.
If flow data is unavailable for too long - declare optical flow use stopped.
Use consistent time periods for all resets
* EKF: Ensure loss of external vision aiding is handled correctly
If data is only source of aiding and has been rejected for too long - reset using data as a position.
Don't reset velocity if there is another source of aiding constraining it.
If data is unavailable for too long, declare external vision use stopped.
Use consistent time periods for all resets.
* EKF: Update parameter documentation
Make the distinction between the no_gps_timeout_max and no_aid_timeout_max parameters clearer
* EKF: make class variable units consistent with documentation
* EKF: Don't reset states when optical flow use commences if using external vision
* EKF: Stop optical flow fusion when on ground if excessive movement is detected.
* EKF: fix terrain estimator vulnerabilities
Reset estimate to sensor value if rejected for 10 seconds
Protect against user motion when on ground.
Fix unnecessary duplication of terrain validity check and separate validity update and reporting.
* EKF: remove unnecessary Info console prints
Optical flow use information can be obtained from the estimator_status.control_mode_flags message
* EKF: fix inaccurate comment
* EKF: remove duplicate calculation from terrain validity accessor function
* Revert "EKF: Release flow speed limit with altitude gained"
This reverts commit e70206f74b.
* Revert "fix code style"
This reverts commit 76bf70121c.
* Revert "Reverse the linked list of data_validator_group and maintain a first node"
This reverts commit 32482e7644.
Gate size class variables should not be initialised to zero, because it will cause a /0 error if fuseVelPosHeight() is called before they are set to their respective parameter values.
When GPS use is gained whilst flying using optical flow data, the sudden release of the speed limit is unannounced to the operator and can cause unexpected acceleration.
This patch releases the speed limit as height is gained, but does not reduce it when the vehicle descends, unless GPS use is lost.
This enables the EKF to use an additional NE velocity measurement. This can be used to improve position hold stability when landing using a beacon system for positioning by fusing the beacon velocity estimates.
Ensures that a complete reset of velocity and position states will always be performed if yaw has had to be reset using GPS velocity.
Ensures that the yaw_align status cannot be set to false once the filter has aligned.
Fuse external vision data using a relative position odometry method when GPS data is also being used and enable both GPOS and EV data to be fused on the same time step.
the primary height source
- moved height control into single function in order to decide which sensor
should be used for estimating height
- under certain conditions allow to use the range finder to estimate height
even if it's not the primary height source
- fixed a bug where the delta time for the baro offset calculation was always
zero
- use methods to set height control flags to reduce code duplication and
to prevent bugs
Signed-off-by: Roman <bapstroman@gmail.com>
Use horizontal acceleration to check if yaw is observable independent of the magnetometer.
Use rotation about the vertical to check if mag raises are observable.
If neither yaw of mag biases are observable, save the magnetic field variances and switch to magnetic yaw fusion.
Use the last learned declination when using magnetic yaw fusion so that the yaw reference remains consistent.
When yaw or biases become observable, reinstate the saved variances and switch back to 3D mag fusion.
Use vertical velocity and position innovation failure to detect bad accelerometer data caused by clipping or aliasing which can cause large vertical acceleration errors and loss of height estimation. When bad accel data is detected:
1) Inhibit accelerometer bias learning
2) Force fusion of vertical velocity and height data
3) Increase accelerometer process noise
The previous practice of relying on the off-diagonals being zero caused problems with conditioning of the magnetometer fusion on one flight. By storing the variances when the learning inhibit becomes active and ensuring that the rows and columns in the covariance matrix for the inhibited states are always zero, the observed numerical conditioning error has been eliminated for replay of the problem flight log .
Make the target EKF rate an integer multiple of the IMU rate. This slightly increases the average prediction time step for the EKF from just over 10msec to 12msec, but the variation reduces significantly which makes filter tuning more deterministic.
Improve the algorithm used to adjust the collection time criteria to reduce jitter in the correction.