* EKF: centralize range finder tilt check
* Ekf-control: do not double check for terrain estimate validity
isRangeAidSuitable can only return true if the terrain estimate is valid
so there is no need for an additional check
* range_finder_checks: restructure the checks to avoid early returns
There is now only one clear path that can lead to the validity being
true.
Furthermore, if the _rng_hgt_valid is true, we can trust it and we don't
need for additional checks such as tilt.
The case where we need to provide fake measurements because the drone is
on the ground and the range finder data is bad is already handled
in "controlHeightFusion" so there is no need to hack the range finder
checks with that.
* Add Sensor and SensorRangeFinder classes
The purpose is to encapsulate the checks for each sensor in a dedicated
class with the same interface
* SensorRangeFinder: encapsulate in estimator::sensor namespace
* EKF: rename _sensor_rng to _range_sensor
* Range checks: include limits in valid range
* RangeChecks: update comment in the continuity checks
* RangeChecks: move more low-level checks in functions
Also move setTilt out of the terrain estimator, this is anyway protected internally
to not compute cos/sin if the parameter did not change.
* Sensor: remove unused virtual functions
Those are not required yet but can still be added later
* SensorRangeFinder: re-organise member variables
Also rename getRangeToEarth to getCosTilt
* SensorRangeFinder: split setSensorTilt and setCosMaxTilt functions
* SensorRangeFinder: Add a few unit tests
- good data
- tilt exceeded
- max range exceeded
* SensorRangeFinder: set hysteresis in us instead of ms
* SensorRangeFinder: Add more tests
* SensorRangeFinder: update continuity, hysteresis and stuck tests
* SensorRangeFinder: rename variables
* SensorRangeFinder: get rid of "delayed" specification
From the SensorRangeFinder class point of view, it's not relevant to
know if the data is delayed or not
* SensorRangeFinder: move time_last_valid out of stuck check
* SensorRangeFinder: rename file names to sensor_range_finder
* SensorRangeFinder: address Kamil's comments
* SensorRangeFinder: Add more tilt tests
* SensorRangeFinder: store current tilt offset
This is to avoid recomputing cos/sin functions at each loop
* Add primitive logging for Ekf
* Add python script to extract sensor data from ULog
* Add primitive sensor replay
* Add iris_gps data for sensor replay
* Add CI for functional change indication
* Update sensor replay flow data type
* update iris_gps_change indication
* test: Update EKF replay test documentation
Co-authored-by: Paul Riseborough <priseborough@users.noreply.github.com>
* Fix comment
* Ekf wrapper for testing
Add utility function for accessing information in the ekf object
* Add step function for Gps sensor
* Add RangeFinder and Flow to simulated sensors
* Add first fusion logic tests
* Add units to function name
* Use EXPECT_TRUE
* Adding missing qualifiers
* Improve EXPECT_ calls
* Improve naming
* ekf_control: Inhibit mag fusion when field magnitude is large
Move mag inhibition check in separate function
* ekf_control: pull out of functionalities out of controlMagFusion
- yaw abd mag bias observability checks
- mag 3D conditions
- load mag covariances
- set and clear mag control modes
* ekf_control: refactor mag heading/3D start/stop.
Move mag declination, mag 3d and mag heading fusion out of the main function
* ekf_control: extract mag yaw reset and mag declination fusion requirements
* ekf_control: use WMM in isStronMagneticField for mag fusion inhibition
- Correct units of WMM strength table
* ekf_control: extract mag_state_only functionality of AUTOFW (VTOL custom)
Also split inAirYawReset from onGroundYawReset
* ekf_control: extract mag automatic selection
- transform if-else into switch-case for parameter fusion type selection
* ekf_control: extract run3DMagAndDeclFusion, reorganize functions, fix
flag naming in Test script
* ekf_control: do not run mag fusion if tilt is not aligned.
Reset some variables on ground even if mag fusion is not running yet. It
could be that it runs later so we need to make sure that those variables
are properly set.
* ekf_control: move controlMagFusion and related functions to mag_control.cpp
* ekf control: check for validity of mag strength from WMM and falls back
to average earth mag field with larger gate if not valid
* ekf control: remove evyaw check for mag inhibition
* ekf control: change nested ternary operator into if-else if
* Ekf: create AlphaFilter template class for simple low-pass filtering
0.1/0.9 type low-pass filters are commonly used to smooth data, this
class is meant to abstract the computation of this filter
* ekf control: reset heading using mag_lpf data to avoid resetting on an outlier
fixes ecl issue #525
* ekf control: replace mag_states_only flag with mag_field_disturbed and
add parameter to enable or disable mag field strength check
* ekf control: remove AUTOFW mag fusion type as not needed This was implemented for VTOL but did not solve the problem and should not be used anymore
* ekf control: use start/stop mag functions everywhere instead of setting the flag
* ekf control: Run mag fusion depending on yaw_align instead of tilt_align
as there is no reason to fuse mag when the ekf isn't aligned
* AlphaFilter: add test for float and Vector3f
* Unfortunately, due to the SWIG dependency, we need sudo to install on
Travis (conflicts when adding with debian-sid source prevent using addons)
which means we cannot use the container-based infrastructure anymore.
* Building the Python bindings requires g++5 (at least with -Werr set).
* When building the Python bindings on Travis, the numpy includes are not found
by cmake, so they have to be added separately by running a Python process with
`numpy.get_include()`
* The build script now (somewhat clumsily) depends on the RUN_PYTEST environment
variable. If it is set to anything other than "", it will make the tests and
run tests and benchmarks