This brings all the range finder data checks (excluding innovation consistency checks) into one place and eliminates the need to perform range checking external to the library.
The hard coded optical flow tilt limit is changed to use the same value as the range finder.
Variable names are changed to make a clear distinction between the max/min values calculated by the stuck range check and the max/min valid values for the sensor.
* EKF angle constants in degrees for readability
* EKF make FILTER_UPDATE_PERIOD_MS static constexpr and add FILTER_UPDATE_PERIOD_S
* EKF controlOpticalFlowFusion() use constants and update comments
* EKF controlMagFusion() use angle in degrees
* EKF move earth spin rate to geo and update usage
* EKF: Fix numerical constant error and clean up comments
Comments do not need to contain numerical values when the code makes these clear.
* EKF collect_imu take const imu sample and populate buffer
* EKF calculateOutputStates cleanup
* EKF add calculate_quaternion output predictor method
* EKF: update documentation
* EKF: remove unnecessary getter function
* EKF calculateOutputStates only apply dt correction to bias
* EKF pytest assert attitude validity, not update() return
* EKF: correct documentation
* EKF: Do not make attitude validity dependent on yaw alignment status
Yaw alignment could fail in flight due to temporary loss of data and yet the quaternions would still usable for stabilisation even though the absolute earth yaw angle wrt true north was uncertain.
Remove duplicate checking for dead reckoning and consolidate into a single function.
Use separate timers to check for start of dead reckoning and check when dead reckoning has been performed for too long for the nav solution to be valid.
Allow the timeout for validity reporting to be adjusted externally.
Separate external reporting of dead reckoning from internal checks.
This enables the EKF to use an additional NE velocity measurement. This can be used to improve position hold stability when landing using a beacon system for positioning by fusing the beacon velocity estimates.
Apply a dead-zone to the vertical position innovation if using baro for height and if in the ground effect region during and just after takeoff.
Method needs to be activated externally.
Turns off automatically after 10 seconds or if specified height gained.
Reduces susceptibility to incorrect estimation of acceleration bias during sustained yaw rate.
Requires an increase in RAM allocation of 837 Bytes to allow for the longer IMU and output predictor buffers that can be created.
* This is a sane choice (and should arguably always be done for classes with
virtual methods to avoid undefined behavior)
* It is required for wrapping the EstimatorInterface with SWIG (without virtual
destructor, deriving from the EstimatorInterface leads to
-Werror=delete-non-virtual-dtor).
Add calculation of a vertical position derivative to the output predictor. This will have degraded tracking relative to the EKF states, but the velocity will be closer to the first derivative of the position and reduce the effect inertial prediction errors on control loops that are operating in a pure velocity feedback mode.
Move calculation of IMU offset angular rate correction out of velocity accessor and into output predictor.
Provide separate accessor for vertical position derivative.
Make the target EKF rate an integer multiple of the IMU rate. This slightly increases the average prediction time step for the EKF from just over 10msec to 12msec, but the variation reduces significantly which makes filter tuning more deterministic.
Improve the algorithm used to adjust the collection time criteria to reduce jitter in the correction.