/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file airspeed_fusion.cpp * airspeed fusion methods. * * @author Carl Olsson * @author Roman Bast * @author Paul Riseborough * */ #include "../ecl.h" #include "ekf.h" #include void Ekf::fuseAirspeed() { float SH_TAS[3] = {}; // Variable used to optimise calculations of measurement jacobian float H_TAS[24] = {}; // Observation Jacobian float SK_TAS[2] = {}; // Variable used to optimise calculations of the Kalman gain vector Vector24f Kfusion; // Kalman gain vector const float vn = _state.vel(0); // Velocity in north direction const float ve = _state.vel(1); // Velocity in east direction const float vd = _state.vel(2); // Velocity in downwards direction const float vwn = _state.wind_vel(0); // Wind speed in north direction const float vwe = _state.wind_vel(1); // Wind speed in east direction // Calculate the predicted airspeed const float v_tas_pred = sqrtf((ve - vwe) * (ve - vwe) + (vn - vwn) * (vn - vwn) + vd * vd); // Variance for true airspeed measurement - (m/sec)^2 const float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) * math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f)); // Perform fusion of True Airspeed measurement if (v_tas_pred > 1.0f) { // determine if we need the sideslip fusion to correct states other than wind const bool update_wind_only = !_is_wind_dead_reckoning; // Calculate the observation jacobian // intermediate variable from algebraic optimisation SH_TAS[0] = 1.0f/v_tas_pred; SH_TAS[1] = (SH_TAS[0]*(2.0f*ve - 2.0f*vwe))*0.5f; SH_TAS[2] = (SH_TAS[0]*(2.0f*vn - 2.0f*vwn))*0.5f; for (uint8_t i = 0; i < _k_num_states; i++) { H_TAS[i] = 0.0f; } H_TAS[4] = SH_TAS[2]; H_TAS[5] = SH_TAS[1]; H_TAS[6] = vd*SH_TAS[0]; H_TAS[22] = -SH_TAS[2]; H_TAS[23] = -SH_TAS[1]; // We don't want to update the innovation variance if the calculation is ill conditioned const float _airspeed_innov_var_temp = (R_TAS + SH_TAS[2]*(P(4,4)*SH_TAS[2] + P(5,4)*SH_TAS[1] - P(22,4)*SH_TAS[2] - P(23,4)*SH_TAS[1] + P(6,4)*vd*SH_TAS[0]) + SH_TAS[1]*(P(4,5)*SH_TAS[2] + P(5,5)*SH_TAS[1] - P(22,5)*SH_TAS[2] - P(23,5)*SH_TAS[1] + P(6,5)*vd*SH_TAS[0]) - SH_TAS[2]*(P(4,22)*SH_TAS[2] + P(5,22)*SH_TAS[1] - P(22,22)*SH_TAS[2] - P(23,22)*SH_TAS[1] + P(6,22)*vd*SH_TAS[0]) - SH_TAS[1]*(P(4,23)*SH_TAS[2] + P(5,23)*SH_TAS[1] - P(22,23)*SH_TAS[2] - P(23,23)*SH_TAS[1] + P(6,23)*vd*SH_TAS[0]) + vd*SH_TAS[0]*(P(4,6)*SH_TAS[2] + P(5,6)*SH_TAS[1] - P(22,6)*SH_TAS[2] - P(23,6)*SH_TAS[1] + P(6,6)*vd*SH_TAS[0])); if (_airspeed_innov_var_temp >= R_TAS) { // Check for badly conditioned calculation SK_TAS[0] = 1.0f / _airspeed_innov_var_temp; _fault_status.flags.bad_airspeed = false; } else { // Reset the estimator covariance matrix _fault_status.flags.bad_airspeed = true; // if we are getting aiding from other sources, warn and reset the wind states and covariances only const char* action_string = nullptr; if (update_wind_only) { resetWindStates(); resetWindCovariance(); action_string = "wind"; } else { initialiseCovariance(); _state.wind_vel.setZero(); action_string = "full"; } ECL_ERR("airspeed badly conditioned - %s covariance reset", action_string); return; } SK_TAS[1] = SH_TAS[1]; if (!update_wind_only) { // we have no other source of aiding, so use airspeed measurements to correct states Kfusion(0) = SK_TAS[0]*(P(0,4)*SH_TAS[2] - P(0,22)*SH_TAS[2] + P(0,5)*SK_TAS[1] - P(0,23)*SK_TAS[1] + P(0,6)*vd*SH_TAS[0]); Kfusion(1) = SK_TAS[0]*(P(1,4)*SH_TAS[2] - P(1,22)*SH_TAS[2] + P(1,5)*SK_TAS[1] - P(1,23)*SK_TAS[1] + P(1,6)*vd*SH_TAS[0]); Kfusion(2) = SK_TAS[0]*(P(2,4)*SH_TAS[2] - P(2,22)*SH_TAS[2] + P(2,5)*SK_TAS[1] - P(2,23)*SK_TAS[1] + P(2,6)*vd*SH_TAS[0]); Kfusion(3) = SK_TAS[0]*(P(3,4)*SH_TAS[2] - P(3,22)*SH_TAS[2] + P(3,5)*SK_TAS[1] - P(3,23)*SK_TAS[1] + P(3,6)*vd*SH_TAS[0]); Kfusion(4) = SK_TAS[0]*(P(4,4)*SH_TAS[2] - P(4,22)*SH_TAS[2] + P(4,5)*SK_TAS[1] - P(4,23)*SK_TAS[1] + P(4,6)*vd*SH_TAS[0]); Kfusion(5) = SK_TAS[0]*(P(5,4)*SH_TAS[2] - P(5,22)*SH_TAS[2] + P(5,5)*SK_TAS[1] - P(5,23)*SK_TAS[1] + P(5,6)*vd*SH_TAS[0]); Kfusion(6) = SK_TAS[0]*(P(6,4)*SH_TAS[2] - P(6,22)*SH_TAS[2] + P(6,5)*SK_TAS[1] - P(6,23)*SK_TAS[1] + P(6,6)*vd*SH_TAS[0]); Kfusion(7) = SK_TAS[0]*(P(7,4)*SH_TAS[2] - P(7,22)*SH_TAS[2] + P(7,5)*SK_TAS[1] - P(7,23)*SK_TAS[1] + P(7,6)*vd*SH_TAS[0]); Kfusion(8) = SK_TAS[0]*(P(8,4)*SH_TAS[2] - P(8,22)*SH_TAS[2] + P(8,5)*SK_TAS[1] - P(8,23)*SK_TAS[1] + P(8,6)*vd*SH_TAS[0]); Kfusion(9) = SK_TAS[0]*(P(9,4)*SH_TAS[2] - P(9,22)*SH_TAS[2] + P(9,5)*SK_TAS[1] - P(9,23)*SK_TAS[1] + P(9,6)*vd*SH_TAS[0]); Kfusion(10) = SK_TAS[0]*(P(10,4)*SH_TAS[2] - P(10,22)*SH_TAS[2] + P(10,5)*SK_TAS[1] - P(10,23)*SK_TAS[1] + P(10,6)*vd*SH_TAS[0]); Kfusion(11) = SK_TAS[0]*(P(11,4)*SH_TAS[2] - P(11,22)*SH_TAS[2] + P(11,5)*SK_TAS[1] - P(11,23)*SK_TAS[1] + P(11,6)*vd*SH_TAS[0]); Kfusion(12) = SK_TAS[0]*(P(12,4)*SH_TAS[2] - P(12,22)*SH_TAS[2] + P(12,5)*SK_TAS[1] - P(12,23)*SK_TAS[1] + P(12,6)*vd*SH_TAS[0]); Kfusion(13) = SK_TAS[0]*(P(13,4)*SH_TAS[2] - P(13,22)*SH_TAS[2] + P(13,5)*SK_TAS[1] - P(13,23)*SK_TAS[1] + P(13,6)*vd*SH_TAS[0]); Kfusion(14) = SK_TAS[0]*(P(14,4)*SH_TAS[2] - P(14,22)*SH_TAS[2] + P(14,5)*SK_TAS[1] - P(14,23)*SK_TAS[1] + P(14,6)*vd*SH_TAS[0]); Kfusion(15) = SK_TAS[0]*(P(15,4)*SH_TAS[2] - P(15,22)*SH_TAS[2] + P(15,5)*SK_TAS[1] - P(15,23)*SK_TAS[1] + P(15,6)*vd*SH_TAS[0]); Kfusion(16) = SK_TAS[0]*(P(16,4)*SH_TAS[2] - P(16,22)*SH_TAS[2] + P(16,5)*SK_TAS[1] - P(16,23)*SK_TAS[1] + P(16,6)*vd*SH_TAS[0]); Kfusion(17) = SK_TAS[0]*(P(17,4)*SH_TAS[2] - P(17,22)*SH_TAS[2] + P(17,5)*SK_TAS[1] - P(17,23)*SK_TAS[1] + P(17,6)*vd*SH_TAS[0]); Kfusion(18) = SK_TAS[0]*(P(18,4)*SH_TAS[2] - P(18,22)*SH_TAS[2] + P(18,5)*SK_TAS[1] - P(18,23)*SK_TAS[1] + P(18,6)*vd*SH_TAS[0]); Kfusion(19) = SK_TAS[0]*(P(19,4)*SH_TAS[2] - P(19,22)*SH_TAS[2] + P(19,5)*SK_TAS[1] - P(19,23)*SK_TAS[1] + P(19,6)*vd*SH_TAS[0]); Kfusion(20) = SK_TAS[0]*(P(20,4)*SH_TAS[2] - P(20,22)*SH_TAS[2] + P(20,5)*SK_TAS[1] - P(20,23)*SK_TAS[1] + P(20,6)*vd*SH_TAS[0]); Kfusion(21) = SK_TAS[0]*(P(21,4)*SH_TAS[2] - P(21,22)*SH_TAS[2] + P(21,5)*SK_TAS[1] - P(21,23)*SK_TAS[1] + P(21,6)*vd*SH_TAS[0]); } Kfusion(22) = SK_TAS[0]*(P(22,4)*SH_TAS[2] - P(22,22)*SH_TAS[2] + P(22,5)*SK_TAS[1] - P(22,23)*SK_TAS[1] + P(22,6)*vd*SH_TAS[0]); Kfusion(23) = SK_TAS[0]*(P(23,4)*SH_TAS[2] - P(23,22)*SH_TAS[2] + P(23,5)*SK_TAS[1] - P(23,23)*SK_TAS[1] + P(23,6)*vd*SH_TAS[0]); // Calculate measurement innovation _airspeed_innov = v_tas_pred - _airspeed_sample_delayed.true_airspeed; // Calculate the innovation variance _airspeed_innov_var = 1.0f / SK_TAS[0]; // Compute the ratio of innovation to gate size _tas_test_ratio = sq(_airspeed_innov) / (sq(fmaxf(_params.tas_innov_gate, 1.0f)) * _airspeed_innov_var); // If the innovation consistency check fails then don't fuse the sample and indicate bad airspeed health if (_tas_test_ratio > 1.0f) { _innov_check_fail_status.flags.reject_airspeed = true; return; } else { _innov_check_fail_status.flags.reject_airspeed = false; } // apply covariance correction via P_new = (I -K*H)*P // first calculate expression for KHP // then calculate P - KHP SquareMatrix24f KHP; float KH[5]; for (unsigned row = 0; row < _k_num_states; row++) { KH[0] = Kfusion(row) * H_TAS[4]; KH[1] = Kfusion(row) * H_TAS[5]; KH[2] = Kfusion(row) * H_TAS[6]; KH[3] = Kfusion(row) * H_TAS[22]; KH[4] = Kfusion(row) * H_TAS[23]; for (unsigned column = 0; column < _k_num_states; column++) { float tmp = KH[0] * P(4,column); tmp += KH[1] * P(5,column); tmp += KH[2] * P(6,column); tmp += KH[3] * P(22,column); tmp += KH[4] * P(23,column); KHP(row,column) = tmp; } } // if the covariance correction will result in a negative variance, then // the covariance matrix is unhealthy and must be corrected bool healthy = true; _fault_status.flags.bad_airspeed = false; for (int i = 0; i < _k_num_states; i++) { if (P(i,i) < KHP(i,i)) { P.uncorrelateCovarianceSetVariance<1>(i, 0.0f); healthy = false; _fault_status.flags.bad_airspeed = true; } } if (healthy) { // apply the covariance corrections P -= KHP; fixCovarianceErrors(true); // apply the state corrections fuse(Kfusion, _airspeed_innov); _time_last_arsp_fuse = _time_last_imu; } } } Vector2f Ekf::getWindVelocity() const { return _state.wind_vel; } Vector2f Ekf::getWindVelocityVariance() const { return P.slice<2, 2>(22,22).diag(); } void Ekf::get_true_airspeed(float *tas) { float tempvar = sqrtf(sq(_state.vel(0) - _state.wind_vel(0)) + sq(_state.vel(1) - _state.wind_vel(1)) + sq(_state.vel(2))); memcpy(tas, &tempvar, sizeof(float)); } /* * Reset the wind states using the current airspeed measurement, ground relative nav velocity, yaw angle and assumption of zero sideslip */ void Ekf::resetWindStates() { const Eulerf euler321(_state.quat_nominal); const float euler_yaw = euler321(2); if (_tas_data_ready && (_imu_sample_delayed.time_us - _airspeed_sample_delayed.time_us < (uint64_t)5e5)) { // estimate wind using zero sideslip assumption and airspeed measurement if airspeed available _state.wind_vel(0) = _state.vel(0) - _airspeed_sample_delayed.true_airspeed * cosf(euler_yaw); _state.wind_vel(1) = _state.vel(1) - _airspeed_sample_delayed.true_airspeed * sinf(euler_yaw); } else { // If we don't have an airspeed measurement, then assume the wind is zero _state.wind_vel.setZero(); } }