/**************************************************************************** * * Copyright (c) 2019 ECL Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ #include #include #include #include "EKF/ekf.h" #include "sensor_simulator/sensor_simulator.h" #include "sensor_simulator/ekf_wrapper.h" class EkfInitializationTest : public ::testing::Test { public: EkfInitializationTest(): ::testing::Test(), _ekf{std::make_shared()}, _sensor_simulator(_ekf), _ekf_wrapper(_ekf) {}; std::shared_ptr _ekf; SensorSimulator _sensor_simulator; EkfWrapper _ekf_wrapper; const float _init_tilt_period = 1.0; // seconds // GTests is calling this void SetUp() override { _ekf->init(0); } // Use this method to clean up any memory, network etc. after each test void TearDown() override { } void initializedOrienationIsMatchingGroundTruth(Quatf true_quaternion) { const Quatf quat_est = _ekf->getQuaternion(); const float precision = 0.0002f; // TODO: this is only required for the pitch90 test to pass EXPECT_TRUE(matrix::isEqual(quat_est, true_quaternion, precision)) << "quat est = " << quat_est(0) << ", " << quat_est(1) << ", " << quat_est(2) << ", " << quat_est(3) << "\nquat true = " << true_quaternion(0) << ", " << true_quaternion(1) << ", " << true_quaternion(2) << ", " << true_quaternion(3); } void validStateAfterOrientationInitialization() { quaternionVarianceBigEnoughAfterOrientationInitialization(); velocityAndPositionCloseToZero(); velocityAndPositionVarianceBigEnoughAfterOrientationInitialization(); } void quaternionVarianceBigEnoughAfterOrientationInitialization() { const matrix::Vector quat_variance = _ekf_wrapper.getQuaternionVariance(); const float quat_variance_limit = 0.0001f; EXPECT_TRUE(quat_variance(1) > quat_variance_limit) << "quat_variance(1)" << quat_variance(1); EXPECT_TRUE(quat_variance(2) > quat_variance_limit) << "quat_variance(2)" << quat_variance(2); EXPECT_TRUE(quat_variance(3) > quat_variance_limit) << "quat_variance(3)" << quat_variance(3); } void velocityAndPositionCloseToZero() { const Vector3f pos = _ekf->getPosition(); const Vector3f vel = _ekf->getVelocity(); EXPECT_TRUE(matrix::isEqual(pos, Vector3f{}, 0.001f)) << "pos = " << pos(0) << ", " << pos(1) << ", " << pos(2); EXPECT_TRUE(matrix::isEqual(vel, Vector3f{}, 0.002f)) << "vel = " << vel(0) << ", " << vel(1) << ", " << vel(2); } void velocityAndPositionVarianceBigEnoughAfterOrientationInitialization() { const Vector3f pos_var = _ekf->getPositionVariance(); const Vector3f vel_var = _ekf->getVelocityVariance(); const float pos_variance_limit = 0.2f; EXPECT_TRUE(pos_var(0) > pos_variance_limit) << "pos_var(0)" << pos_var(0); EXPECT_TRUE(pos_var(1) > pos_variance_limit) << "pos_var(1)" << pos_var(1); EXPECT_TRUE(pos_var(2) > pos_variance_limit) << "pos_var(2)" << pos_var(2); const float vel_variance_limit = 0.3f; EXPECT_TRUE(vel_var(0) > vel_variance_limit) << "vel_var(0)" << vel_var(0); EXPECT_TRUE(vel_var(1) > vel_variance_limit) << "vel_var(1)" << vel_var(1); EXPECT_TRUE(vel_var(2) > vel_variance_limit) << "vel_var(2)" << vel_var(2); } void learningCorrectAccelBias() { const Dcmf R_to_earth = Dcmf(_ekf->getQuaternion()); const Vector3f dvel_bias_var = _ekf_wrapper.getDeltaVelBiasVariance(); const Vector3f accel_bias = _ekf->getAccelBias(); for (int i = 0; i < 3; i++){ if (fabsf(R_to_earth(2, i)) > 0.8f) { // Highly observable, the variance decreases EXPECT_LT(dvel_bias_var(i), 4.0e-6f) << "axis " << i; } else { // Poorly observable, the variance is set to 0 EXPECT_FLOAT_EQ(dvel_bias_var(i), 0.f) << "axis" << i; EXPECT_FLOAT_EQ(accel_bias(i), 0.f) << "axis" << i; } } } }; TEST_F(EkfInitializationTest, initializeWithZeroTilt) { const float pitch = math::radians(0.0f); const float roll = math::radians(0.0f); const Eulerf euler_angles_sim(roll, pitch, 0.0f); const Quatf quat_sim(euler_angles_sim); _sensor_simulator.simulateOrientation(quat_sim); _sensor_simulator.runSeconds(_init_tilt_period); initializedOrienationIsMatchingGroundTruth(quat_sim); validStateAfterOrientationInitialization(); _sensor_simulator.runSeconds(1.f); learningCorrectAccelBias(); } TEST_F(EkfInitializationTest, initializeHeadingWithZeroTilt) { const float pitch = math::radians(0.0f); const float roll = math::radians(0.0f); const float yaw = math::radians(90.0f); const Eulerf euler_angles_sim(roll, pitch, yaw); const Quatf quat_sim(euler_angles_sim); _sensor_simulator.simulateOrientation(quat_sim); _sensor_simulator.runSeconds(_init_tilt_period); initializedOrienationIsMatchingGroundTruth(quat_sim); validStateAfterOrientationInitialization(); _sensor_simulator.runSeconds(1.f); learningCorrectAccelBias(); } TEST_F(EkfInitializationTest, initializeWithTilt) { const float pitch = math::radians(30.0f); const float roll = math::radians(60.0f); const Eulerf euler_angles_sim(roll, pitch, 0.0f); const Quatf quat_sim(euler_angles_sim); _sensor_simulator.simulateOrientation(quat_sim); _sensor_simulator.runSeconds(_init_tilt_period); initializedOrienationIsMatchingGroundTruth(quat_sim); validStateAfterOrientationInitialization(); _sensor_simulator.runSeconds(1.f); learningCorrectAccelBias(); } TEST_F(EkfInitializationTest, initializeWithPitch90) { const float pitch = math::radians(90.0f); const float roll = math::radians(0.0f); const Eulerf euler_angles_sim(roll, pitch, 0.0f); const Quatf quat_sim(euler_angles_sim); _sensor_simulator.simulateOrientation(quat_sim); _sensor_simulator.runSeconds(_init_tilt_period); initializedOrienationIsMatchingGroundTruth(quat_sim); // TODO: Quaternion Variance is smaller and vel x is larger // in this case than in the other cases validStateAfterOrientationInitialization(); _sensor_simulator.runSeconds(1.f); learningCorrectAccelBias(); } TEST_F(EkfInitializationTest, initializeWithRoll90) { const float pitch = math::radians(0.0f); const float roll = math::radians(90.0f); const Eulerf euler_angles_sim(roll, pitch, 0.0f); const Quatf quat_sim(euler_angles_sim); _sensor_simulator.simulateOrientation(quat_sim); _sensor_simulator.runSeconds(_init_tilt_period); initializedOrienationIsMatchingGroundTruth(quat_sim); validStateAfterOrientationInitialization(); _sensor_simulator.runSeconds(1.f); learningCorrectAccelBias(); }