/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ekf_helper.cpp * Definition of ekf helper functions. * * @author Roman Bast * */ #include "ekf.h" #ifdef __PX4_POSIX #include #include #endif #include #include "mathlib.h" // Reset the velocity states. If we have a recent and valid // gps measurement then use for velocity initialisation bool Ekf::resetVelocity() { if (_control_status.flags.gps) { // if we have a valid GPS measurement use it to initialise velocity states gpsSample gps_newest = _gps_buffer.get_newest(); if (_time_last_imu - gps_newest.time_us < 2*GPS_MAX_INTERVAL) { _state.vel = gps_newest.vel; return true; } else { // XXX use the value of the last known velocity return false; } } else if (_control_status.flags.opt_flow || _control_status.flags.ev_pos) { _state.vel.setZero(); return true; } else { return false; } } // Reset position states. If we have a recent and valid // gps measurement then use for position initialisation bool Ekf::resetPosition() { if (_control_status.flags.gps) { // if we have a fresh GPS measurement, use it to initialise position states and correct the position for the measurement delay gpsSample gps_newest = _gps_buffer.get_newest(); float time_delay = 1e-6f * (float)(_imu_sample_delayed.time_us - gps_newest.time_us); float max_time_delay = 1e-6f * (float)GPS_MAX_INTERVAL; if (time_delay < max_time_delay) { _state.pos(0) = gps_newest.pos(0) + gps_newest.vel(0) * time_delay; _state.pos(1) = gps_newest.pos(1) + gps_newest.vel(1) * time_delay; return true; } else { // XXX use the value of the last known position return false; } } else if (_control_status.flags.opt_flow) { _state.pos(0) = 0.0f; _state.pos(1) = 0.0f; return true; } else if (_control_status.flags.ev_pos) { // if we have fresh data, reset the position to the measurement extVisionSample ev_newest = _ext_vision_buffer.get_newest(); if (_time_last_imu - ev_newest.time_us < 2*EV_MAX_INTERVAL) { // use the most recent data if it's time offset from the fusion time horizon is smaller int32_t dt_newest = ev_newest.time_us - _imu_sample_delayed.time_us; int32_t dt_delayed = _ev_sample_delayed.time_us - _imu_sample_delayed.time_us; if (abs(dt_newest) < abs(dt_delayed)) { _state.pos(0) = ev_newest.posNED(0); _state.pos(1) = ev_newest.posNED(1); } else { _state.pos(0) = _ev_sample_delayed.posNED(0); _state.pos(1) = _ev_sample_delayed.posNED(1); } return true; } else { // XXX use the value of the last known position return false; } } else { return false; } } // Reset height state using the last height measurement void Ekf::resetHeight() { // Get the most recent GPS data gpsSample gps_newest = _gps_buffer.get_newest(); // store the current vertical position and velocity for reference so we can calculate and publish the reset amount float old_vert_pos = _state.pos(2); bool vert_pos_reset = false; float old_vert_vel = _state.vel(2); bool vert_vel_reset = false; // reset the vertical position if (_control_status.flags.rng_hgt) { rangeSample range_newest = _range_buffer.get_newest(); if (_time_last_imu - range_newest.time_us < 2 * RNG_MAX_INTERVAL) { // calculate the new vertical position using range sensor float new_pos_down = _hgt_sensor_offset - range_newest.rng; // update the state and assoicated variance _state.pos(2) = new_pos_down; // reset the associated covariance values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(_params.range_noise); vert_pos_reset = true; // reset the baro offset which is subtracted from the baro reading if we need to use it as a backup baroSample baro_newest = _baro_buffer.get_newest(); _baro_hgt_offset = baro_newest.hgt + _state.pos(2); } else { // TODO: reset to last known range based estimate } } else if (_control_status.flags.baro_hgt) { // initialize vertical position with newest baro measurement baroSample baro_newest = _baro_buffer.get_newest(); if (_time_last_imu - baro_newest.time_us < 2 * BARO_MAX_INTERVAL) { _state.pos(2) = _hgt_sensor_offset - baro_newest.hgt + _baro_hgt_offset; // reset the associated covariance values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(_params.baro_noise); vert_pos_reset = true; } else { // TODO: reset to last known baro based estimate } } else if (_control_status.flags.gps_hgt) { // initialize vertical position and velocity with newest gps measurement if (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL) { _state.pos(2) = _hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref; // reset the associated covarince values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(gps_newest.hacc); vert_pos_reset = true; // reset the baro offset which is subtracted from the baro reading if we need to use it as a backup baroSample baro_newest = _baro_buffer.get_newest(); _baro_hgt_offset = baro_newest.hgt + _state.pos(2); } else { // TODO: reset to last known gps based estimate } } else if (_control_status.flags.ev_pos) { // initialize vertical position with newest measurement extVisionSample ev_newest = _ext_vision_buffer.get_newest(); if (_time_last_imu - ev_newest.time_us < 2 * EV_MAX_INTERVAL) { _state.pos(2) = ev_newest.posNED(2); } else { // TODO: reset to last known baro based estimate } } // reset the vertical velocity covariance values zeroRows(P, 6, 6); zeroCols(P, 6, 6); // reset the vertical velocity state if (_control_status.flags.gps && (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL)) { // If we are using GPS, then use it to reset the vertical velocity _state.vel(2) = gps_newest.vel(2); // the state variance is the same as the observation P[6][6] = sq(1.5f * gps_newest.sacc); } else { // we don't know what the vertical velocity is, so set it to zero _state.vel(2) = 0.0f; // Set the variance to a value large enough to allow the state to converge quickly // that does not destabilise the filter P[6][6] = 10.0f; } vert_vel_reset = true; // store the reset amount and time to be published if (vert_pos_reset) { _vert_pos_reset_delta = _state.pos(2) - old_vert_pos; _time_vert_pos_reset = _time_last_imu; } if (vert_vel_reset) { _vert_vel_reset_delta = _state.vel(2) - old_vert_vel; _time_vert_vel_reset = _time_last_imu; } // add the reset amount to the output observer states _output_new.pos(2) += _vert_pos_reset_delta; _output_new.vel(2) += _vert_vel_reset_delta; // add the reset amount to the output observer buffered data outputSample output_states; unsigned output_length = _output_buffer.get_length(); for (unsigned i=0; i < output_length; i++) { output_states = _output_buffer.get_from_index(i); if (vert_pos_reset) { output_states.pos(2) += _vert_pos_reset_delta; } if (vert_vel_reset) { output_states.vel(2) += _vert_vel_reset_delta; } _output_buffer.push_to_index(i,output_states); } } // align output filter states to match EKF states at the fusion time horizon void Ekf::alignOutputFilter() { // calculate the quaternion delta between the output and EKF quaternions at the EKF fusion time horizon Quaternion quat_inv = _state.quat_nominal.inversed(); Quaternion q_delta = _output_sample_delayed.quat_nominal * quat_inv; q_delta.normalize(); // calculate the velocity and posiiton deltas between the output and EKF at the EKF fusion time horizon Vector3f vel_delta = _state.vel - _output_sample_delayed.vel; Vector3f pos_delta = _state.pos - _output_sample_delayed.pos; // loop through the output filter state history and add the deltas outputSample output_states; unsigned output_length = _output_buffer.get_length(); for (unsigned i=0; i < output_length; i++) { output_states = _output_buffer.get_from_index(i); output_states.quat_nominal *= q_delta; output_states.quat_nominal.normalize(); output_states.vel += vel_delta; output_states.pos += pos_delta; _output_buffer.push_to_index(i,output_states); } } // Reset heading and magnetic field states bool Ekf::resetMagHeading(Vector3f &mag_init) { // If we don't a tilt estimate then we cannot initialise the yaw if (!_control_status.flags.tilt_align) { return false; } // get the roll, pitch, yaw estimates and set the yaw to zero matrix::Quaternion q(_state.quat_nominal(0), _state.quat_nominal(1), _state.quat_nominal(2), _state.quat_nominal(3)); matrix::Euler euler_init(q); euler_init(2) = 0.0f; // rotate the magnetometer measurements into earth axes matrix::Dcm R_to_earth_zeroyaw(euler_init); Vector3f mag_ef_zeroyaw = R_to_earth_zeroyaw * mag_init; euler_init(2) = _mag_declination - atan2f(mag_ef_zeroyaw(1), mag_ef_zeroyaw(0)); // calculate initial quaternion states for the ekf // we don't change the output attitude to avoid jumps _state.quat_nominal = Quaternion(euler_init); // reset the quaternion variances because the yaw angle could have changed by a significant amount // by setting them to zero we avoid 'kicks' in angle when 3-D fusion starts and the imu process noise // will grow them again. zeroRows(P, 0, 3); zeroCols(P, 0, 3); // calculate initial earth magnetic field states matrix::Dcm R_to_earth(euler_init); _state.mag_I = R_to_earth * mag_init; // reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance zeroRows(P, 16, 21); zeroCols(P, 16, 21); for (uint8_t index = 16; index <= 21; index ++) { P[index][index] = sq(_params.mag_noise); } return true; } // Calculate the magnetic declination to be used by the alignment and fusion processing void Ekf::calcMagDeclination() { // set source of magnetic declination for internal use if (_params.mag_declination_source & MASK_USE_GEO_DECL) { // use parameter value until GPS is available, then use value returned by geo library if (_NED_origin_initialised) { _mag_declination = _mag_declination_gps; _mag_declination_to_save_deg = math::degrees(_mag_declination); } else { _mag_declination = math::radians(_params.mag_declination_deg); _mag_declination_to_save_deg = _params.mag_declination_deg; } } else { // always use the parameter value _mag_declination = math::radians(_params.mag_declination_deg); _mag_declination_to_save_deg = _params.mag_declination_deg; } } // This function forces the covariance matrix to be symmetric void Ekf::makeSymmetrical(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { for (unsigned row = first; row <= last; row++) { for (unsigned column = 0; column < row; column++) { float tmp = (cov_mat[row][column] + cov_mat[column][row]) / 2; cov_mat[row][column] = tmp; cov_mat[column][row] = tmp; } } } void Ekf::constrainStates() { for (int i = 0; i < 4; i++) { _state.quat_nominal(i) = math::constrain(_state.quat_nominal(i), -1.0f, 1.0f); } for (int i = 0; i < 3; i++) { _state.vel(i) = math::constrain(_state.vel(i), -1000.0f, 1000.0f); } for (int i = 0; i < 3; i++) { _state.pos(i) = math::constrain(_state.pos(i), -1.e6f, 1.e6f); } for (int i = 0; i < 3; i++) { _state.gyro_bias(i) = math::constrain(_state.gyro_bias(i), -0.349066f * _dt_imu_avg, 0.349066f * _dt_imu_avg); } for (int i = 0; i < 3; i++) { _state.accel_bias(i) = math::constrain(_state.accel_bias(i), -1.0f * _dt_imu_avg, 1.0f * _dt_imu_avg); } for (int i = 0; i < 3; i++) { _state.mag_I(i) = math::constrain(_state.mag_I(i), -1.0f, 1.0f); } for (int i = 0; i < 3; i++) { _state.mag_B(i) = math::constrain(_state.mag_B(i), -0.5f, 0.5f); } for (int i = 0; i < 2; i++) { _state.wind_vel(i) = math::constrain(_state.wind_vel(i), -100.0f, 100.0f); } } // calculate the earth rotation vector void Ekf::calcEarthRateNED(Vector3f &omega, double lat_rad) const { omega(0) = _k_earth_rate * cosf((float)lat_rad); omega(1) = 0.0f; omega(2) = -_k_earth_rate * sinf((float)lat_rad); } // gets the innovations of velocity and position measurements // 0-2 vel, 3-5 pos void Ekf::get_vel_pos_innov(float vel_pos_innov[6]) { memcpy(vel_pos_innov, _vel_pos_innov, sizeof(float) * 6); } // writes the innovations of the earth magnetic field measurements void Ekf::get_mag_innov(float mag_innov[3]) { memcpy(mag_innov, _mag_innov, 3 * sizeof(float)); } // gets the innovations of the airspeed measnurement void Ekf::get_airspeed_innov(float *airspeed_innov) { memcpy(airspeed_innov,&_airspeed_innov, sizeof(float)); } // gets the innovations of the heading measurement void Ekf::get_heading_innov(float *heading_innov) { memcpy(heading_innov, &_heading_innov, sizeof(float)); } // gets the innovation variances of velocity and position measurements // 0-2 vel, 3-5 pos void Ekf::get_vel_pos_innov_var(float vel_pos_innov_var[6]) { memcpy(vel_pos_innov_var, _vel_pos_innov_var, sizeof(float) * 6); } // gets the innovation variances of the earth magnetic field measurements void Ekf::get_mag_innov_var(float mag_innov_var[3]) { memcpy(mag_innov_var, _mag_innov_var, sizeof(float) * 3); } // gest the innovation variance of the airspeed measurement void Ekf::get_airspeed_innov_var(float *airspeed_innov_var) { memcpy(airspeed_innov_var, &_airspeed_innov_var, sizeof(float)); } // gets the innovation variance of the heading measurement void Ekf::get_heading_innov_var(float *heading_innov_var) { memcpy(heading_innov_var, &_heading_innov_var, sizeof(float)); } // get GPS check status void Ekf::get_gps_check_status(uint16_t *val) { *val = _gps_check_fail_status.value; } // get the state vector at the delayed time horizon void Ekf::get_state_delayed(float *state) { for (int i = 0; i < 4; i++) { state[i] = _state.quat_nominal(i); } for (int i = 0; i < 3; i++) { state[i + 4] = _state.vel(i); } for (int i = 0; i < 3; i++) { state[i + 7] = _state.pos(i); } for (int i = 0; i < 3; i++) { state[i + 10] = _state.gyro_bias(i); } for (int i = 0; i < 3; i++) { state[i + 13] = _state.accel_bias(i); } for (int i = 0; i < 3; i++) { state[i + 16] = _state.mag_I(i); } for (int i = 0; i < 3; i++) { state[i + 19] = _state.mag_B(i); } for (int i = 0; i < 2; i++) { state[i + 22] = _state.wind_vel(i); } } // get the accelerometer bias void Ekf::get_accel_bias(float bias[3]) { float temp[3]; temp[0] = _state.accel_bias(0) /_dt_ekf_avg; temp[1] = _state.accel_bias(1) /_dt_ekf_avg; temp[2] = _state.accel_bias(2) /_dt_ekf_avg; memcpy(bias, temp, 3 * sizeof(float)); } // get the diagonal elements of the covariance matrix void Ekf::get_covariances(float *covariances) { for (unsigned i = 0; i < _k_num_states; i++) { covariances[i] = P[i][i]; } } // get the position and height of the ekf origin in WGS-84 coordinates and time the origin was set void Ekf::get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) { memcpy(origin_time, &_last_gps_origin_time_us, sizeof(uint64_t)); memcpy(origin_pos, &_pos_ref, sizeof(map_projection_reference_s)); memcpy(origin_alt, &_gps_alt_ref, sizeof(float)); } // get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position void Ekf::get_ekf_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning) { // report absolute accuracy taking into account the uncertainty in location of the origin // TODO we a need a way to allow for baro drift error float temp1 = sqrtf(P[7][7] + P[8][8] + sq(_gps_origin_eph)); float temp2 = sqrtf(P[9][9] + sq(_gps_origin_epv)); memcpy(ekf_eph, &temp1, sizeof(float)); memcpy(ekf_epv, &temp2, sizeof(float)); // report dead reckoning if it is more than a second since we fused in GPS bool temp3 = (_time_last_imu - _time_last_pos_fuse > 1e6); memcpy(dead_reckoning, &temp3, sizeof(bool)); } // fuse measurement void Ekf::fuse(float *K, float innovation) { for (unsigned i = 0; i < 4; i++) { _state.quat_nominal(i) = _state.quat_nominal(i) - K[i] * innovation; } _state.quat_nominal.normalize(); for (unsigned i = 0; i < 3; i++) { _state.vel(i) = _state.vel(i) - K[i + 4] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.pos(i) = _state.pos(i) - K[i + 7] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.gyro_bias(i) = _state.gyro_bias(i) - K[i + 10] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.accel_bias(i) = _state.accel_bias(i) - K[i + 13] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.mag_I(i) = _state.mag_I(i) - K[i + 16] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.mag_B(i) = _state.mag_B(i) - K[i + 19] * innovation; } for (unsigned i = 0; i < 2; i++) { _state.wind_vel(i) = _state.wind_vel(i) - K[i + 22] * innovation; } } // zero specified range of rows in the state covariance matrix void Ekf::zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { uint8_t row; for (row = first; row <= last; row++) { memset(&cov_mat[row][0], 0, sizeof(cov_mat[0][0]) * 24); } } // zero specified range of columns in the state covariance matrix void Ekf::zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { uint8_t row; for (row = 0; row <= 23; row++) { memset(&cov_mat[row][first], 0, sizeof(cov_mat[0][0]) * (1 + last - first)); } } bool Ekf::global_position_is_valid() { // return true if the position estimate is valid // TODO implement proper check based on published GPS accuracy, innovation consistency checks and timeout status return (_NED_origin_initialised && ((_time_last_imu - _time_last_gps) < 5e6) && _control_status.flags.gps); } // perform a vector cross product Vector3f EstimatorInterface::cross_product(const Vector3f &vecIn1, const Vector3f &vecIn2) { Vector3f vecOut; vecOut(0) = vecIn1(1)*vecIn2(2) - vecIn1(2)*vecIn2(1); vecOut(1) = vecIn1(2)*vecIn2(0) - vecIn1(0)*vecIn2(2); vecOut(2) = vecIn1(0)*vecIn2(1) - vecIn1(1)*vecIn2(0); return vecOut; } // calculate the inverse rotation matrix from a quaternion rotation Matrix3f EstimatorInterface::quat_to_invrotmat(const Quaternion quat) { float q00 = quat(0) * quat(0); float q11 = quat(1) * quat(1); float q22 = quat(2) * quat(2); float q33 = quat(3) * quat(3); float q01 = quat(0) * quat(1); float q02 = quat(0) * quat(2); float q03 = quat(0) * quat(3); float q12 = quat(1) * quat(2); float q13 = quat(1) * quat(3); float q23 = quat(2) * quat(3); Matrix3f dcm; dcm(0,0) = q00 + q11 - q22 - q33; dcm(1,1) = q00 - q11 + q22 - q33; dcm(2,2) = q00 - q11 - q22 + q33; dcm(0,1) = 2.0f * (q12 - q03); dcm(0,2) = 2.0f * (q13 + q02); dcm(1,0) = 2.0f * (q12 + q03); dcm(1,2) = 2.0f * (q23 - q01); dcm(2,0) = 2.0f * (q13 - q02); dcm(2,1) = 2.0f * (q23 + q01); return dcm; }