#include "EKFGSF_yaw.h" #include EKFGSF_yaw::EKFGSF_yaw() { // this flag must be false when we start _ahrs_ekf_gsf_tilt_aligned = false; // these objects are initialised in initialise() before being used internally, but can be reported for logging before then memset(&_ahrs_ekf_gsf, 0, sizeof(_ahrs_ekf_gsf)); memset(&_ekf_gsf, 0, sizeof(_ekf_gsf)); _gsf_yaw = 0.0f; _ahrs_accel.zero(); } void EKFGSF_yaw::update(const imuSample& imu_sample, bool run_EKF, // set to true when flying or movement is suitable for yaw estimation float airspeed, // true airspeed used for centripetal accel compensation - set to 0 when not required. const Vector3f &imu_gyro_bias) // estimated rate gyro bias (rad/sec) { // copy to class variables _delta_ang = imu_sample.delta_ang; _delta_vel = imu_sample.delta_vel; _delta_ang_dt = imu_sample.delta_ang_dt; _delta_vel_dt = imu_sample.delta_vel_dt; _run_ekf_gsf = run_EKF; _true_airspeed = airspeed; // to reduce effect of vibration, filter using an LPF whose time constant is 1/10 of the AHRS tilt correction time constant const float filter_coef = fminf(10.0f * _delta_vel_dt * _tilt_gain, 1.0f); const Vector3f accel = _delta_vel / fmaxf(_delta_vel_dt, 0.001f); _ahrs_accel = _ahrs_accel * (1.0f - filter_coef) + accel * filter_coef; // Initialise states first time if (!_ahrs_ekf_gsf_tilt_aligned) { // check for excessive acceleration to reduce likelihood of large initial roll/pitch errors // due to vehicle movement const float accel_norm_sq = accel.norm_squared(); const float upper_accel_limit = CONSTANTS_ONE_G * 1.1f; const float lower_accel_limit = CONSTANTS_ONE_G * 0.9f; const bool ok_to_align = (accel_norm_sq > sq(lower_accel_limit)) && (accel_norm_sq < sq(upper_accel_limit)); if (ok_to_align) { initialiseEKFGSF(); ahrsAlignTilt(); _ahrs_ekf_gsf_tilt_aligned = true; } return; } // calculate common values used by the AHRS complementary filter models _ahrs_accel_norm = _ahrs_accel.norm(); // AHRS prediction cycle for each model - this always runs _ahrs_accel_fusion_gain = ahrsCalcAccelGain(); for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) { predictEKF(model_index); } // The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference if (_run_ekf_gsf && _vel_data_updated) { if (!_ekf_gsf_vel_fuse_started) { initialiseEKFGSF(); ahrsAlignYaw(); // Initialise to gyro bias estimate from main filter because there could be a large // uncorrected rate gyro bias error about the gravity vector for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) { _ahrs_ekf_gsf[model_index].gyro_bias = imu_gyro_bias; } _ekf_gsf_vel_fuse_started = true; } else { bool bad_update = false; for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) { // subsequent measurements are fused as direct state observations if (!updateEKF(model_index)) { bad_update = true; } } if (!bad_update) { float total_weight = 0.0f; // calculate weighting for each model assuming a normal distribution const float min_weight = 1e-5f; uint8_t n_weight_clips = 0; for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) { _model_weights(model_index) = gaussianDensity(model_index) * _model_weights(model_index); if (_model_weights(model_index) < min_weight) { n_weight_clips++; _model_weights(model_index) = min_weight; } total_weight += _model_weights(model_index); } // normalise the weighting function if (n_weight_clips < N_MODELS_EKFGSF) { _model_weights /= total_weight; } else { // all weights have collapsed due to excessive innovation variances so reset filters initialiseEKFGSF(); } // Enforce a minimum weighting value. This was added during initial development but has not been needed // subsequently, so this block of code and the corresponding _weight_min can be removed if we get // through testing without any weighting function issues. if (_weight_min > FLT_EPSILON) { float correction_sum = 0.0f; // amount the sum of weights has been increased by application of the limit bool change_mask[N_MODELS_EKFGSF] = {}; // true when the weighting for that model has been increased float unmodified_weights_sum = 0.0f; // sum of unmodified weights for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) { if (_model_weights(model_index) < _weight_min) { correction_sum += _weight_min - _model_weights(model_index); _model_weights(model_index) = _weight_min; change_mask[model_index] = true; } else { unmodified_weights_sum += _model_weights(model_index); } } // rescale the unmodified weights to make the total sum unity const float scale_factor = (unmodified_weights_sum - correction_sum - _weight_min) / (unmodified_weights_sum - _weight_min); for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) { if (!change_mask[model_index]) { _model_weights(model_index) = _weight_min + scale_factor * (_model_weights(model_index) - _weight_min); } } } } } } else if (_ekf_gsf_vel_fuse_started && !_run_ekf_gsf) { // wait to fly again _ekf_gsf_vel_fuse_started = false; } // Calculate a composite yaw vector as a weighted average of the states for each model. // To avoid issues with angle wrapping, the yaw state is converted to a vector with length // equal to the weighting value before it is summed. Vector2f yaw_vector; for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) { yaw_vector(0) += _model_weights(model_index) * cosf(_ekf_gsf[model_index].X(2)); yaw_vector(1) += _model_weights(model_index) * sinf(_ekf_gsf[model_index].X(2)); } _gsf_yaw = atan2f(yaw_vector(1),yaw_vector(0)); // calculate a composite variance for the yaw state from a weighted average of the variance for each model // models with larger innovations are weighted less _gsf_yaw_variance = 0.0f; for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) { const float yaw_delta = wrap_pi(_ekf_gsf[model_index].X(2) - _gsf_yaw); _gsf_yaw_variance += _model_weights(model_index) * (_ekf_gsf[model_index].P(2,2) + yaw_delta * yaw_delta); } // prevent the same velocity data being used more than once _vel_data_updated = false; } void EKFGSF_yaw::ahrsPredict(const uint8_t model_index) { // generate attitude solution using simple complementary filter for the selected model const Vector3f ang_rate = _delta_ang / fmaxf(_delta_ang_dt, 0.001f) - _ahrs_ekf_gsf[model_index].gyro_bias; const Dcmf R_to_body = _ahrs_ekf_gsf[model_index].R.transpose(); const Vector3f gravity_direction_bf = R_to_body.col(2); // Perform angular rate correction using accel data and reduce correction as accel magnitude moves away from 1 g (reduces drift when vehicle picked up and moved). // During fixed wing flight, compensate for centripetal acceleration assuming coordinated turns and X axis forward Vector3f tilt_correction; if (_ahrs_accel_fusion_gain > 0.0f) { Vector3f accel = _ahrs_accel; if (_true_airspeed > FLT_EPSILON) { // Calculate body frame centripetal acceleration with assumption X axis is aligned with the airspeed vector // Use cross product of body rate and body frame airspeed vector const Vector3f centripetal_accel_bf = Vector3f(0.0f, _true_airspeed * ang_rate(2), - _true_airspeed * ang_rate(1)); // correct measured accel for centripetal acceleration accel -= centripetal_accel_bf; } tilt_correction = (gravity_direction_bf % accel) * _ahrs_accel_fusion_gain / _ahrs_accel_norm; } // Gyro bias estimation constexpr float gyro_bias_limit = 0.05f; const float spinRate = ang_rate.length(); if (spinRate < 0.175f) { _ahrs_ekf_gsf[model_index].gyro_bias -= tilt_correction * (_gyro_bias_gain * _delta_ang_dt); _ahrs_ekf_gsf[model_index].gyro_bias = matrix::constrain(_ahrs_ekf_gsf[model_index].gyro_bias, -gyro_bias_limit, gyro_bias_limit); } // delta angle from previous to current frame const Vector3f delta_angle_corrected = _delta_ang + (tilt_correction - _ahrs_ekf_gsf[model_index].gyro_bias) * _delta_ang_dt; // Apply delta angle to rotation matrix _ahrs_ekf_gsf[model_index].R = ahrsPredictRotMat(_ahrs_ekf_gsf[model_index].R, delta_angle_corrected); } void EKFGSF_yaw::ahrsAlignTilt() { // Rotation matrix is constructed directly from acceleration measurement and will be the same for // all models so only need to calculate it once. Assumptions are: // 1) Yaw angle is zero - yaw is aligned later for each model when velocity fusion commences. // 2) The vehicle is not accelerating so all of the measured acceleration is due to gravity. // Calculate earth frame Down axis unit vector rotated into body frame const Vector3f down_in_bf = -_delta_vel.normalized(); // Calculate earth frame North axis unit vector rotated into body frame, orthogonal to 'down_in_bf' const Vector3f i_vec_bf(1.0f,0.0f,0.0f); Vector3f north_in_bf = i_vec_bf - down_in_bf * (i_vec_bf.dot(down_in_bf)); north_in_bf.normalize(); // Calculate earth frame East axis unit vector rotated into body frame, orthogonal to 'down_in_bf' and 'north_in_bf' const Vector3f east_in_bf = down_in_bf % north_in_bf; // Each column in a rotation matrix from earth frame to body frame represents the projection of the // corresponding earth frame unit vector rotated into the body frame, eg 'north_in_bf' would be the first column. // We need the rotation matrix from body frame to earth frame so the earth frame unit vectors rotated into body // frame are copied into corresponding rows instead. Dcmf R; R.setRow(0, north_in_bf); R.setRow(1, east_in_bf); R.setRow(2, down_in_bf); for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) { _ahrs_ekf_gsf[model_index].R = R; } } void EKFGSF_yaw::ahrsAlignYaw() { // Align yaw angle for each model for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) { Dcmf& R = _ahrs_ekf_gsf[model_index].R; const float yaw = wrap_pi(_ekf_gsf[model_index].X(2)); R = updateYawInRotMat(yaw, R); _ahrs_ekf_gsf[model_index].aligned = true; } } void EKFGSF_yaw::predictEKF(const uint8_t model_index) { // generate an attitude reference using IMU data ahrsPredict(model_index); // we don't start running the EKF part of the algorithm until there are regular velocity observations if (!_ekf_gsf_vel_fuse_started) { return; } // Calculate the yaw state using a projection onto the horizontal that avoids gimbal lock const Dcmf& R = _ahrs_ekf_gsf[model_index].R; _ekf_gsf[model_index].X(2) = shouldUse321RotationSequence(R) ? getEuler321Yaw(R) : getEuler312Yaw(R); // calculate delta velocity in a horizontal front-right frame const Vector3f del_vel_NED = _ahrs_ekf_gsf[model_index].R * _delta_vel; const float cos_yaw = cosf(_ekf_gsf[model_index].X(2)); const float sin_yaw = sinf(_ekf_gsf[model_index].X(2)); const float dvx = del_vel_NED(0) * cos_yaw + del_vel_NED(1) * sin_yaw; const float dvy = - del_vel_NED(0) * sin_yaw + del_vel_NED(1) * cos_yaw; // sum delta velocities in earth frame: _ekf_gsf[model_index].X(0) += del_vel_NED(0); _ekf_gsf[model_index].X(1) += del_vel_NED(1); // predict covariance - equations generated using EKF/python/gsf_ekf_yaw_estimator/main.py // Local short variable name copies required for readability const float &P00 = _ekf_gsf[model_index].P(0,0); const float &P01 = _ekf_gsf[model_index].P(0,1); const float &P02 = _ekf_gsf[model_index].P(0,2); const float &P11 = _ekf_gsf[model_index].P(1,1); const float &P12 = _ekf_gsf[model_index].P(1,2); const float &P22 = _ekf_gsf[model_index].P(2,2); const float &psi = _ekf_gsf[model_index].X(2); // Use fixed values for delta velocity and delta angle process noise variances const float dvxVar = sq(_accel_noise * _delta_vel_dt); // variance of forward delta velocity - (m/s)^2 const float dvyVar = dvxVar; // variance of right delta velocity - (m/s)^2 const float dazVar = sq(_gyro_noise * _delta_ang_dt); // variance of yaw delta angle - rad^2 // optimized auto generated code from SymPy script src/lib/ecl/EKF/python/ekf_derivation/main.py const float S0 = cosf(psi); const float S1 = ecl::powf(S0, 2); const float S2 = sinf(psi); const float S3 = ecl::powf(S2, 2); const float S4 = S0*dvy + S2*dvx; const float S5 = P02 - P22*S4; const float S6 = S0*dvx - S2*dvy; const float S7 = S0*S2; const float S8 = P01 + S7*dvxVar - S7*dvyVar; const float S9 = P12 + P22*S6; _ekf_gsf[model_index].P(0,0) = P00 - P02*S4 + S1*dvxVar + S3*dvyVar - S4*S5; _ekf_gsf[model_index].P(0,1) = -P12*S4 + S5*S6 + S8; _ekf_gsf[model_index].P(1,1) = P11 + P12*S6 + S1*dvyVar + S3*dvxVar + S6*S9; _ekf_gsf[model_index].P(0,2) = S5; _ekf_gsf[model_index].P(1,2) = S9; _ekf_gsf[model_index].P(2,2) = P22 + dazVar; // covariance matrix is symmetrical, so copy upper half to lower half _ekf_gsf[model_index].P(1,0) = _ekf_gsf[model_index].P(0,1); _ekf_gsf[model_index].P(2,0) = _ekf_gsf[model_index].P(0,2); _ekf_gsf[model_index].P(2,1) = _ekf_gsf[model_index].P(1,2); // constrain variances const float min_var = 1e-6f; for (unsigned index = 0; index < 3; index++) { _ekf_gsf[model_index].P(index,index) = fmaxf(_ekf_gsf[model_index].P(index,index),min_var); } } // Update EKF states and covariance for specified model index using velocity measurement bool EKFGSF_yaw::updateEKF(const uint8_t model_index) { // set observation variance from accuracy estimate supplied by GPS and apply a sanity check minimum const float velObsVar = sq(fmaxf(_vel_accuracy, 0.5f)); // calculate velocity observation innovations _ekf_gsf[model_index].innov(0) = _ekf_gsf[model_index].X(0) - _vel_NE(0); _ekf_gsf[model_index].innov(1) = _ekf_gsf[model_index].X(1) - _vel_NE(1); // Use temporary variables for covariance elements to reduce verbosity of auto-code expressions const float &P00 = _ekf_gsf[model_index].P(0,0); const float &P01 = _ekf_gsf[model_index].P(0,1); const float &P02 = _ekf_gsf[model_index].P(0,2); const float &P11 = _ekf_gsf[model_index].P(1,1); const float &P12 = _ekf_gsf[model_index].P(1,2); const float &P22 = _ekf_gsf[model_index].P(2,2); // optimized auto generated code from SymPy script src/lib/ecl/EKF/python/ekf_derivation/main.py const float t0 = ecl::powf(P01, 2); const float t1 = -t0; const float t2 = P00*P11 + P00*velObsVar + P11*velObsVar + t1 + ecl::powf(velObsVar, 2); if (fabsf(t2) < 1e-6f) { return false; } const float t3 = 1.0F/t2; const float t4 = P11 + velObsVar; const float t5 = P01*t3; const float t6 = -t5; const float t7 = P00 + velObsVar; const float t8 = P00*t4 + t1; const float t9 = t5*velObsVar; const float t10 = P11*t7; const float t11 = t1 + t10; const float t12 = P01*P12; const float t13 = P02*t4; const float t14 = P01*P02; const float t15 = P12*t7; const float t16 = t0*velObsVar; const float t17 = ecl::powf(t2, -2); const float t18 = t4*velObsVar + t8; const float t19 = t17*t18; const float t20 = t17*(t16 + t7*t8); const float t21 = t0 - t10; const float t22 = t17*t21; const float t23 = t14 - t15; const float t24 = P01*t23; const float t25 = t12 - t13; const float t26 = t16 - t21*t4; const float t27 = t17*t26; const float t28 = t11 + t7*velObsVar; const float t30 = t17*t28; const float t31 = P01*t25; const float t32 = t23*t4 + t31; const float t33 = t17*t32; const float t35 = t24 + t25*t7; const float t36 = t17*t35; _ekf_gsf[model_index].S_det_inverse = t3; _ekf_gsf[model_index].S_inverse(0,0) = t3*t4; _ekf_gsf[model_index].S_inverse(0,1) = t6; _ekf_gsf[model_index].S_inverse(1,1) = t3*t7; _ekf_gsf[model_index].S_inverse(1,0) = _ekf_gsf[model_index].S_inverse(0,1); matrix::Matrix K; K(0,0) = t3*t8; K(1,0) = t9; K(2,0) = t3*(-t12 + t13); K(0,1) = t9; K(1,1) = t11*t3; K(2,1) = t3*(-t14 + t15); _ekf_gsf[model_index].P(0,0) = P00 - t16*t19 - t20*t8; _ekf_gsf[model_index].P(0,1) = P01*(t18*t22 - t20*velObsVar + 1); _ekf_gsf[model_index].P(1,1) = P11 - t16*t30 + t22*t26; _ekf_gsf[model_index].P(0,2) = P02 + t19*t24 + t20*t25; _ekf_gsf[model_index].P(1,2) = P12 + t23*t27 + t30*t31; _ekf_gsf[model_index].P(2,2) = P22 - t23*t33 - t25*t36; _ekf_gsf[model_index].P(1,0) = _ekf_gsf[model_index].P(0,1); _ekf_gsf[model_index].P(2,0) = _ekf_gsf[model_index].P(0,2); _ekf_gsf[model_index].P(2,1) = _ekf_gsf[model_index].P(1,2); // constrain variances const float min_var = 1e-6f; for (unsigned index = 0; index < 3; index++) { _ekf_gsf[model_index].P(index,index) = fmaxf(_ekf_gsf[model_index].P(index,index),min_var); } // test ratio = transpose(innovation) * inverse(innovation variance) * innovation = [1x2] * [2,2] * [2,1] = [1,1] const float test_ratio = _ekf_gsf[model_index].innov * (_ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov); // Perform a chi-square innovation consistency test and calculate a compression scale factor // that limits the magnitude of innovations to 5-sigma // If the test ratio is greater than 25 (5 Sigma) then reduce the length of the innovation vector to clip it at 5-Sigma // This protects from large measurement spikes const float innov_comp_scale_factor = test_ratio > 25.f ? sqrtf(25.0f / test_ratio) : 1.f; // Correct the state vector and capture the change in yaw angle const float oldYaw = _ekf_gsf[model_index].X(2); _ekf_gsf[model_index].X -= (K * _ekf_gsf[model_index].innov) * innov_comp_scale_factor; const float yawDelta = _ekf_gsf[model_index].X(2) - oldYaw; // apply the change in yaw angle to the AHRS // take advantage of sparseness in the yaw rotation matrix const float cosYaw = cosf(yawDelta); const float sinYaw = sinf(yawDelta); const float R_prev00 = _ahrs_ekf_gsf[model_index].R(0, 0); const float R_prev01 = _ahrs_ekf_gsf[model_index].R(0, 1); const float R_prev02 = _ahrs_ekf_gsf[model_index].R(0, 2); _ahrs_ekf_gsf[model_index].R(0, 0) = R_prev00 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 0) * sinYaw; _ahrs_ekf_gsf[model_index].R(0, 1) = R_prev01 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 1) * sinYaw; _ahrs_ekf_gsf[model_index].R(0, 2) = R_prev02 * cosYaw - _ahrs_ekf_gsf[model_index].R(1, 2) * sinYaw; _ahrs_ekf_gsf[model_index].R(1, 0) = R_prev00 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 0) * cosYaw; _ahrs_ekf_gsf[model_index].R(1, 1) = R_prev01 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 1) * cosYaw; _ahrs_ekf_gsf[model_index].R(1, 2) = R_prev02 * sinYaw + _ahrs_ekf_gsf[model_index].R(1, 2) * cosYaw; return true; } void EKFGSF_yaw::initialiseEKFGSF() { _gsf_yaw = 0.0f; _ekf_gsf_vel_fuse_started = false; _gsf_yaw_variance = _m_pi2 * _m_pi2; _model_weights.setAll(1.0f / (float)N_MODELS_EKFGSF); // All filter models start with the same weight memset(&_ekf_gsf, 0, sizeof(_ekf_gsf)); const float yaw_increment = 2.0f * _m_pi / (float)N_MODELS_EKFGSF; for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) { // evenly space initial yaw estimates in the region between +-Pi _ekf_gsf[model_index].X(2) = -_m_pi + (0.5f * yaw_increment) + ((float)model_index * yaw_increment); // take velocity states and corresponding variance from last measurement _ekf_gsf[model_index].X(0) = _vel_NE(0); _ekf_gsf[model_index].X(1) = _vel_NE(1); _ekf_gsf[model_index].P(0,0) = sq(_vel_accuracy); _ekf_gsf[model_index].P(1,1) = _ekf_gsf[model_index].P(0,0); // use half yaw interval for yaw uncertainty _ekf_gsf[model_index].P(2,2) = sq(0.5f * yaw_increment); } } float EKFGSF_yaw::gaussianDensity(const uint8_t model_index) const { // calculate transpose(innovation) * inv(S) * innovation const float normDist = _ekf_gsf[model_index].innov.dot(_ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov); return _m_2pi_inv * sqrtf(_ekf_gsf[model_index].S_det_inverse) * expf(-0.5f * normDist); } bool EKFGSF_yaw::getLogData(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]) const { if (_ekf_gsf_vel_fuse_started) { *yaw_composite = _gsf_yaw; *yaw_variance = _gsf_yaw_variance; for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) { yaw[model_index] = _ekf_gsf[model_index].X(2); innov_VN[model_index] = _ekf_gsf[model_index].innov(0); innov_VE[model_index] = _ekf_gsf[model_index].innov(1); weight[model_index] = _model_weights(model_index); } return true; } return false; } float EKFGSF_yaw::ahrsCalcAccelGain() const { // Calculate the acceleration fusion gain using a continuous function that is unity at 1g and zero // at the min and max g value. Allow for more acceleration when flying as a fixed wing vehicle using centripetal // acceleration correction as higher and more sustained g will be experienced. // Use a quadratic instead of linear function to prevent vibration around 1g reducing the tilt correction effectiveness. // see https://www.desmos.com/calculator/dbqbxvnwfg float attenuation = 2.f; const bool centripetal_accel_compensation_enabled = (_true_airspeed > FLT_EPSILON); if (centripetal_accel_compensation_enabled && _ahrs_accel_norm > CONSTANTS_ONE_G) { attenuation = 1.f; } const float delta_accel_g = (_ahrs_accel_norm - CONSTANTS_ONE_G) / CONSTANTS_ONE_G; return _tilt_gain * sq(1.f - math::min(attenuation * fabsf(delta_accel_g), 1.f)); } Matrix3f EKFGSF_yaw::ahrsPredictRotMat(const Matrix3f &R, const Vector3f &g) { Matrix3f ret = R; ret(0,0) += R(0,1) * g(2) - R(0,2) * g(1); ret(0,1) += R(0,2) * g(0) - R(0,0) * g(2); ret(0,2) += R(0,0) * g(1) - R(0,1) * g(0); ret(1,0) += R(1,1) * g(2) - R(1,2) * g(1); ret(1,1) += R(1,2) * g(0) - R(1,0) * g(2); ret(1,2) += R(1,0) * g(1) - R(1,1) * g(0); ret(2,0) += R(2,1) * g(2) - R(2,2) * g(1); ret(2,1) += R(2,2) * g(0) - R(2,0) * g(2); ret(2,2) += R(2,0) * g(1) - R(2,1) * g(0); // Renormalise rows for (uint8_t r = 0; r < 3; r++) { const float rowLengthSq = ret.row(r).norm_squared(); if (rowLengthSq > FLT_EPSILON) { // Use linear approximation for inverse sqrt taking advantage of the row length being close to 1.0 const float rowLengthInv = 1.5f - 0.5f * rowLengthSq; ret.row(r) *= rowLengthInv; } } return ret; } bool EKFGSF_yaw::getYawData(float *yaw, float *yaw_variance) const { if(_ekf_gsf_vel_fuse_started) { *yaw = _gsf_yaw; *yaw_variance = _gsf_yaw_variance; return true; } return false; } void EKFGSF_yaw::setVelocity(const Vector2f &velocity, float accuracy) { _vel_NE = velocity; _vel_accuracy = accuracy; _vel_data_updated = true; }