/**************************************************************************** * * Copyright (c) 2014-2020 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file geo_mag_declination.cpp * * Calculation / lookup table for Earth's magnetic field declination (deg), inclination (deg) and strength (mTesla). * Data generated by https://www.ngdc.noaa.gov/geomag-web/#igrfgrid IGRF calculator on 22 Jan 2018 * * XXX Lookup table currently too coarse in resolution (only full degrees) * and lat/lon res - needs extension medium term. * */ #include "geo_mag_declination.h" #include "geo_magnetic_tables.hpp" #include #include #include using math::constrain; static constexpr unsigned get_lookup_table_index(float *val, float min, float max) { /* for the rare case of hitting the bounds exactly * the rounding logic wouldn't fit, so enforce it. */ /* limit to table bounds - required for maxima even when table spans full globe range */ /* limit to (table bounds - 1) because bilinear interpolation requires checking (index + 1) */ *val = constrain(*val, min, max - SAMPLING_RES); return static_cast((-(min) + *val) / SAMPLING_RES); } static constexpr float get_table_data(float lat, float lon, const int16_t table[LAT_DIM][LON_DIM]) { lat = math::constrain(lat, SAMPLING_MIN_LAT, SAMPLING_MAX_LAT); if (lon > SAMPLING_MAX_LON) { lon -= 360; } if (lon < SAMPLING_MIN_LON) { lon += 360; } /* round down to nearest sampling resolution */ float min_lat = floorf(lat / SAMPLING_RES) * SAMPLING_RES; float min_lon = floorf(lon / SAMPLING_RES) * SAMPLING_RES; /* find index of nearest low sampling point */ unsigned min_lat_index = get_lookup_table_index(&min_lat, SAMPLING_MIN_LAT, SAMPLING_MAX_LAT); unsigned min_lon_index = get_lookup_table_index(&min_lon, SAMPLING_MIN_LON, SAMPLING_MAX_LON); const float data_sw = table[min_lat_index][min_lon_index]; const float data_se = table[min_lat_index][min_lon_index + 1]; const float data_ne = table[min_lat_index + 1][min_lon_index + 1]; const float data_nw = table[min_lat_index + 1][min_lon_index]; /* perform bilinear interpolation on the four grid corners */ const float lat_scale = constrain((lat - min_lat) / SAMPLING_RES, 0.f, 1.f); const float lon_scale = constrain((lon - min_lon) / SAMPLING_RES, 0.f, 1.f); const float data_min = lon_scale * (data_se - data_sw) + data_sw; const float data_max = lon_scale * (data_ne - data_nw) + data_nw; return lat_scale * (data_max - data_min) + data_min; } float get_mag_declination_radians(float lat, float lon) { return get_table_data(lat, lon, declination_table) * 1e-4f; // declination table stored as 10^-4 radians } float get_mag_declination_degrees(float lat, float lon) { return math::degrees(get_mag_declination_radians(lat, lon)); } float get_mag_inclination_radians(float lat, float lon) { return get_table_data(lat, lon, inclination_table) * 1e-4f; // inclination table stored as 10^-4 radians } float get_mag_inclination_degrees(float lat, float lon) { return math::degrees(get_mag_inclination_radians(lat, lon)); } float get_mag_strength_gauss(float lat, float lon) { return get_table_data(lat, lon, strength_table) * 1e-4f; // strength table table stored as milli-Gauss * 10 } float get_mag_strength_tesla(float lat, float lon) { return get_mag_strength_gauss(lat, lon) * 1e-4f; // 1 Gauss == 0.0001 Tesla }