/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file sideslip_fusion.cpp * sideslip fusion methods. * equations generated using EKF/python/ekf_derivation/main.py * * @author Carl Olsson * @author Paul Riseborough * */ #include "ekf.h" #include #include void Ekf::fuseSideslip() { // get latest estimated orientation const float &q0 = _state.quat_nominal(0); const float &q1 = _state.quat_nominal(1); const float &q2 = _state.quat_nominal(2); const float &q3 = _state.quat_nominal(3); // get latest velocity in earth frame const float &vn = _state.vel(0); const float &ve = _state.vel(1); const float &vd = _state.vel(2); // get latest wind velocity in earth frame const float &vwn = _state.wind_vel(0); const float &vwe = _state.wind_vel(1); // calculate relative wind velocity in earth frame and rotate into body frame const Vector3f rel_wind_earth(vn - vwn, ve - vwe, vd); const Dcmf earth_to_body = quatToInverseRotMat(_state.quat_nominal); const Vector3f rel_wind_body = earth_to_body * rel_wind_earth; // perform fusion of assumed sideslip = 0 if (rel_wind_body.norm() > 7.0f) { float R_BETA = sq(_params.beta_noise); // observation noise variance // determine if we need the sideslip fusion to correct states other than wind bool update_wind_only = !_is_wind_dead_reckoning; // Intermediate Values const float HK0 = vn - vwn; const float HK1 = ve - vwe; const float HK2 = HK0*q0 + HK1*q3 - q2*vd; const float HK3 = q0*q2 - q1*q3; const float HK4 = 2*vd; const float HK5 = q0*q3; const float HK6 = q1*q2; const float HK7 = 2*HK5 + 2*HK6; const float HK8 = powf(q0, 2); const float HK9 = powf(q3, 2); const float HK10 = HK8 - HK9; const float HK11 = powf(q1, 2); const float HK12 = powf(q2, 2); const float HK13 = HK11 - HK12; const float HK14 = HK10 + HK13; const float HK15 = HK0*HK14 + HK1*HK7 - HK3*HK4; const float HK16 = 1.0F/HK15; const float HK17 = q0*q1 + q2*q3; const float HK18 = HK10 - HK11 + HK12; const float HK19 = HK16*(-2*HK0*(HK5 - HK6) + HK1*HK18 + HK17*HK4); const float HK20 = -HK0*q3 + HK1*q0 + q1*vd; const float HK21 = -HK19*HK2 + HK20; const float HK22 = 2*HK16; const float HK23 = HK0*q1 + HK1*q2 + q3*vd; const float HK24 = HK0*q2 - HK1*q1 + q0*vd; const float HK25 = -HK19*HK23 + HK24; const float HK26 = HK19*HK24 + HK23; const float HK27 = HK19*HK20 + HK2; const float HK28 = HK14*HK19 + 2*HK5 - 2*HK6; const float HK29 = HK16*HK28; const float HK30 = HK19*HK7; const float HK31 = HK17 + HK19*HK3; const float HK32 = HK13 + HK30 - HK8 + HK9; const float HK33 = 2*HK31; const float HK34 = 2*HK26; const float HK35 = 2*HK25; const float HK36 = 2*HK27; const float HK37 = 2*HK21; const float HK38 = HK28*P(0,22) - HK28*P(0,4) + HK32*P(0,23) - HK32*P(0,5) + HK33*P(0,6) + HK34*P(0,2) + HK35*P(0,1) - HK36*P(0,3) + HK37*P(0,0); const float HK39 = powf(HK15, -2); const float HK40 = -HK28*P(4,6) + HK28*P(6,22) - HK32*P(5,6) + HK32*P(6,23) + HK33*P(6,6) + HK34*P(2,6) + HK35*P(1,6) - HK36*P(3,6) + HK37*P(0,6); const float HK41 = HK32*P(5,23); const float HK42 = HK28*P(22,23) - HK28*P(4,23) + HK32*P(23,23) + HK33*P(6,23) + HK34*P(2,23) + HK35*P(1,23) - HK36*P(3,23) + HK37*P(0,23) - HK41; const float HK43 = HK32*HK39; const float HK44 = HK28*P(4,22); const float HK45 = HK28*P(22,22) + HK32*P(22,23) - HK32*P(5,22) + HK33*P(6,22) + HK34*P(2,22) + HK35*P(1,22) - HK36*P(3,22) + HK37*P(0,22) - HK44; const float HK46 = HK28*HK39; const float HK47 = -HK28*P(4,5) + HK28*P(5,22) - HK32*P(5,5) + HK33*P(5,6) + HK34*P(2,5) + HK35*P(1,5) - HK36*P(3,5) + HK37*P(0,5) + HK41; const float HK48 = -HK28*P(4,4) + HK32*P(4,23) - HK32*P(4,5) + HK33*P(4,6) + HK34*P(2,4) + HK35*P(1,4) - HK36*P(3,4) + HK37*P(0,4) + HK44; const float HK49 = HK28*P(2,22) - HK28*P(2,4) + HK32*P(2,23) - HK32*P(2,5) + HK33*P(2,6) + HK34*P(2,2) + HK35*P(1,2) - HK36*P(2,3) + HK37*P(0,2); const float HK50 = HK28*P(1,22) - HK28*P(1,4) + HK32*P(1,23) - HK32*P(1,5) + HK33*P(1,6) + HK34*P(1,2) + HK35*P(1,1) - HK36*P(1,3) + HK37*P(0,1); const float HK51 = HK28*P(3,22) - HK28*P(3,4) + HK32*P(3,23) - HK32*P(3,5) + HK33*P(3,6) + HK34*P(2,3) + HK35*P(1,3) - HK36*P(3,3) + HK37*P(0,3); //const float HK52 = HK16/(HK33*HK39*HK40 + HK34*HK39*HK49 + HK35*HK39*HK50 - HK36*HK39*HK51 + HK37*HK38*HK39 + HK42*HK43 - HK43*HK47 + HK45*HK46 - HK46*HK48 + R_BETA); // innovation variance _beta_innov_var = (HK33*HK39*HK40 + HK34*HK39*HK49 + HK35*HK39*HK50 - HK36*HK39*HK51 + HK37*HK38*HK39 + HK42*HK43 - HK43*HK47 + HK45*HK46 - HK46*HK48 + R_BETA); // Reset covariance and states if the calculation is badly conditioned if (_beta_innov_var < R_BETA) { _fault_status.flags.bad_sideslip = true; // if we are getting aiding from other sources, warn and reset the wind states and covariances only const char* action_string = nullptr; if (update_wind_only) { resetWindStates(); resetWindCovariance(); action_string = "wind"; } else { initialiseCovariance(); _state.wind_vel.setZero(); action_string = "full"; } ECL_ERR("sideslip badly conditioned - %s covariance reset", action_string); return; } _fault_status.flags.bad_sideslip = false; const float HK52 = HK16/_beta_innov_var; // Calculate predicted sideslip angle and innovation using small angle approximation _beta_innov = rel_wind_body(1) / rel_wind_body(0); // Compute the ratio of innovation to gate size _beta_test_ratio = sq(_beta_innov) / (sq(fmaxf(_params.beta_innov_gate, 1.0f)) * _beta_innov_var); // if the innovation consistency check fails then don't fuse the sample and indicate bad beta health if (_beta_test_ratio > 1.0f) { _innov_check_fail_status.flags.reject_sideslip = true; return; } else { _innov_check_fail_status.flags.reject_sideslip = false; } // Observation Jacobians SparseVector24f<0,1,2,3,4,5,6,22,23> Hfusion; Hfusion.at<0>() = HK21*HK22; Hfusion.at<1>() = HK22*HK25; Hfusion.at<2>() = HK22*HK26; Hfusion.at<3>() = -HK22*HK27; Hfusion.at<4>() = -HK29; Hfusion.at<5>() = HK16*(HK18 - HK30); Hfusion.at<6>() = HK22*HK31; Hfusion.at<22>() = HK29; Hfusion.at<23>() = HK16*HK32; // Calculate Kalman gains Vector24f Kfusion; if (!update_wind_only) { Kfusion(0) = HK38*HK52; Kfusion(1) = HK50*HK52; Kfusion(2) = HK49*HK52; Kfusion(3) = HK51*HK52; Kfusion(4) = HK48*HK52; Kfusion(5) = HK47*HK52; Kfusion(6) = HK40*HK52; for (unsigned row = 7; row <= 21; row++) { Kfusion(row) = HK52*(HK28*P(row,22) - HK28*P(4,row) + HK32*P(row,23) - HK32*P(5,row) + HK33*P(6,row) + HK34*P(2,row) + HK35*P(1,row) - HK36*P(3,row) + HK37*P(0,row)); } } Kfusion(22) = HK45*HK52; Kfusion(23) = HK42*HK52; // synthetic sideslip measurement sample has passed check so record it _time_last_beta_fuse = _time_last_imu; // apply covariance correction via P_new = (I -K*H)*P // first calculate expression for KHP // then calculate P - KHP const SquareMatrix24f KHP = computeKHP(Kfusion, Hfusion); const bool healthy = checkAndFixCovarianceUpdate(KHP); _fault_status.flags.bad_sideslip = !healthy; if (healthy) { // apply the covariance corrections P -= KHP; fixCovarianceErrors(true); // apply the state corrections fuse(Kfusion, _beta_innov); _time_last_beta_fuse = _time_last_imu; } } }