/**************************************************************************** * * Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file estimator_interface.cpp * Definition of base class for attitude estimators * * @author Roman Bast * @author Paul Riseborough * @author Siddharth B Purohit */ #define __STDC_FORMAT_MACROS #include #include #include "estimator_interface.h" #include "mathlib.h" EstimatorInterface::EstimatorInterface(): _dt_imu_avg(0.0f), _imu_ticks(0), _imu_updated(false), _initialised(false), _vehicle_armed(false), _in_air(false), _NED_origin_initialised(false), _gps_speed_valid(false), _gps_speed_accuracy(0.0f), _gps_hpos_accuracy(0.0f), _gps_origin_eph(0.0f), _gps_origin_epv(0.0f), _mag_healthy(false), _yaw_test_ratio(0.0f), _time_last_imu(0), _time_last_gps(0), _time_last_mag(0), _time_last_baro(0), _time_last_range(0), _time_last_airspeed(0), _mag_declination_gps(0.0f), _mag_declination_to_save_deg(0.0f) { _pos_ref = {}; memset(_mag_test_ratio, 0, sizeof(_mag_test_ratio)); memset(_vel_pos_test_ratio, 0, sizeof(_vel_pos_test_ratio)); } EstimatorInterface::~EstimatorInterface() { } // Accumulate imu data and store to buffer at desired rate void EstimatorInterface::setIMUData(uint64_t time_usec, uint64_t delta_ang_dt, uint64_t delta_vel_dt, float *delta_ang, float *delta_vel) { if (!_initialised) { init(time_usec); _initialised = true; } float dt = (float)(time_usec - _time_last_imu) / 1000 / 1000; dt = math::max(dt, 1.0e-4f); dt = math::min(dt, 0.02f); _time_last_imu = time_usec; if (_time_last_imu > 0) { _dt_imu_avg = 0.8f * _dt_imu_avg + 0.2f * dt; } // copy data imuSample imu_sample_new = {}; memcpy(&imu_sample_new.delta_ang._data[0], delta_ang, sizeof(imu_sample_new.delta_ang._data)); memcpy(&imu_sample_new.delta_vel._data[0], delta_vel, sizeof(imu_sample_new.delta_vel._data)); //convert time from us to secs imu_sample_new.delta_ang_dt = delta_ang_dt / 1e6f; imu_sample_new.delta_vel_dt = delta_vel_dt / 1e6f; imu_sample_new.time_us = time_usec; _imu_ticks++; if (collect_imu(imu_sample_new)) { _imu_buffer.push(imu_sample_new); _imu_ticks = 0; _imu_updated = true; } else { _imu_updated = false; } _imu_sample_delayed = _imu_buffer.get_oldest(); } void EstimatorInterface::setMagData(uint64_t time_usec, float *data) { if (time_usec - _time_last_mag > 70000) { magSample mag_sample_new = {}; mag_sample_new.time_us = time_usec - _params.mag_delay_ms * 1000; mag_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2; _time_last_mag = time_usec; memcpy(&mag_sample_new.mag._data[0], data, sizeof(mag_sample_new.mag._data)); _mag_buffer.push(mag_sample_new); } } void EstimatorInterface::setGpsData(uint64_t time_usec, struct gps_message *gps) { if (!collect_gps(time_usec, gps) || !_initialised) { return; } // Only use GPS data if we have a 3D fix and limit the GPS data rate to a maximum of 14Hz if (time_usec - _time_last_gps > 70000 && gps->fix_type >= 3) { gpsSample gps_sample_new = {}; gps_sample_new.time_us = gps->time_usec - _params.gps_delay_ms * 1000; gps_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2; _time_last_gps = time_usec; gps_sample_new.time_us = math::max(gps_sample_new.time_us, _imu_sample_delayed.time_us); memcpy(gps_sample_new.vel._data[0], gps->vel_ned, sizeof(gps_sample_new.vel._data)); _gps_speed_valid = gps->vel_ned_valid; _gps_speed_accuracy = gps->sacc; _gps_hpos_accuracy = gps->eph; float lpos_x = 0.0f; float lpos_y = 0.0f; map_projection_project(&_pos_ref, (gps->lat / 1.0e7), (gps->lon / 1.0e7), &lpos_x, &lpos_y); gps_sample_new.pos(0) = lpos_x; gps_sample_new.pos(1) = lpos_y; gps_sample_new.hgt = gps->alt / 1e3f; _gps_buffer.push(gps_sample_new); } } void EstimatorInterface::setBaroData(uint64_t time_usec, float *data) { if (!collect_baro(time_usec, data) || !_initialised) { return; } if (time_usec - _time_last_baro > 70000) { baroSample baro_sample_new; baro_sample_new.hgt = *data; baro_sample_new.time_us = time_usec - _params.baro_delay_ms * 1000; baro_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2; _time_last_baro = time_usec; baro_sample_new.time_us = math::max(baro_sample_new.time_us, _imu_sample_delayed.time_us); _baro_buffer.push(baro_sample_new); } } void EstimatorInterface::setAirspeedData(uint64_t time_usec, float *data) { if (!collect_airspeed(time_usec, data) || !_initialised) { return; } if (time_usec > _time_last_airspeed) { airspeedSample airspeed_sample_new; airspeed_sample_new.airspeed = *data; airspeed_sample_new.time_us = time_usec - _params.airspeed_delay_ms * 1000; airspeed_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2; _time_last_airspeed = time_usec; _airspeed_buffer.push(airspeed_sample_new); } } static float rng; // set range data void EstimatorInterface::setRangeData(uint64_t time_usec, float *data) { if (!collect_range(time_usec, data) || !_initialised) { return; } if (time_usec > _time_last_range) { rangeSample range_sample_new; range_sample_new.rng = *data; rng = *data; range_sample_new.time_us -= _params.range_delay_ms * 1000; range_sample_new.time_us = time_usec; _time_last_range = time_usec; _range_buffer.push(range_sample_new); } } // set optical flow data void EstimatorInterface::setOpticalFlowData(uint64_t time_usec, flow_message *flow) { if (!collect_opticalflow(time_usec, flow) || !_initialised) { return; } // if data passes checks, push to buffer if (time_usec > _time_last_optflow) { // check if enough integration time float delta_time = 1e-6f * (float)flow->dt; bool delta_time_good = (delta_time >= 0.05f); // check magnitude is within sensor limits float flow_rate_magnitude; bool flow_magnitude_good = false; if (delta_time_good) { flow_rate_magnitude = flow->flowdata.norm() / delta_time; flow_magnitude_good = (flow_rate_magnitude <= _params.flow_rate_max); } // check quality metric bool flow_quality_good = (flow->quality >= _params.flow_qual_min); if (delta_time_good && flow_magnitude_good && flow_quality_good) { flowSample optflow_sample_new; // calculate the system time-stamp for the mid point of the integration period optflow_sample_new.time_us = time_usec - _params.flow_delay_ms * 1000 - flow->dt / 2; // copy the quality metric returned by the PX4Flow sensor optflow_sample_new.quality = flow->quality; // NOTE: the EKF uses the reverse sign convention to the flow sensor. EKF assumes positive LOS rate is produced by a RH rotation of the image about the sensor axis. // copy the optical and gyro measured delta angles optflow_sample_new.flowRadXY = - flow->flowdata; optflow_sample_new.gyroXY = - flow->gyrodata; // compensate for body motion to give a LOS rate optflow_sample_new.flowRadXYcomp = optflow_sample_new.flowRadXY - optflow_sample_new.gyroXY; // convert integraton interval to seconds optflow_sample_new.dt = 1e-6f * (float)flow->dt; _time_last_optflow = time_usec; // push to buffer _flow_buffer.push(optflow_sample_new); } } } bool EstimatorInterface::initialise_interface(uint64_t timestamp) { if (!(_imu_buffer.allocate(IMU_BUFFER_LENGTH) && _gps_buffer.allocate(OBS_BUFFER_LENGTH) && _mag_buffer.allocate(OBS_BUFFER_LENGTH) && _baro_buffer.allocate(OBS_BUFFER_LENGTH) && _range_buffer.allocate(OBS_BUFFER_LENGTH) && _airspeed_buffer.allocate(OBS_BUFFER_LENGTH) && _flow_buffer.allocate(OBS_BUFFER_LENGTH) && _output_buffer.allocate(IMU_BUFFER_LENGTH))) { printf("Estimator Buffer Allocation failed!"); unallocate_buffers(); return false; } _dt_imu_avg = 0.0f; _imu_sample_delayed.delta_ang.setZero(); _imu_sample_delayed.delta_vel.setZero(); _imu_sample_delayed.delta_ang_dt = 0.0f; _imu_sample_delayed.delta_vel_dt = 0.0f; _imu_sample_delayed.time_us = timestamp; _imu_ticks = 0; _initialised = false; _time_last_imu = 0; _time_last_gps = 0; _time_last_mag = 0; _time_last_baro = 0; _time_last_range = 0; _time_last_airspeed = 0; _time_last_optflow = 0; memset(&_fault_status, 0, sizeof(_fault_status)); return true; } void EstimatorInterface::unallocate_buffers() { _imu_buffer.unallocate(); _gps_buffer.unallocate(); _mag_buffer.unallocate(); _baro_buffer.unallocate(); _range_buffer.unallocate(); _airspeed_buffer.unallocate(); _flow_buffer.unallocate(); _output_buffer.unallocate(); } bool EstimatorInterface::local_position_is_valid() { // return true if the position estimate is valid return ((_time_last_imu - _time_last_optflow) < 5e6) || global_position_is_valid(); }