/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file estimator_base.h * Definition of base class for attitude estimators * * @author Roman Bast * @author Siddharth Bharat Purohit * */ namespace estimator { struct gps_message { uint64_t time_usec; int32_t lat; // Latitude in 1E-7 degrees int32_t lon; // Longitude in 1E-7 degrees int32_t alt; // Altitude in 1E-3 meters (millimeters) above MSL uint8_t fix_type; // 0-1: no fix, 2: 2D fix, 3: 3D fix, 4: RTCM code differential, 5: Real-Time float eph; // GPS horizontal position accuracy in m float epv; // GPS vertical position accuracy in m float sacc; // GPS speed accuracy in m/s uint64_t time_usec_vel; // Timestamp for velocity informations float vel_m_s; // GPS ground speed (m/s) float vel_ned[3]; // GPS ground speed NED bool vel_ned_valid; // GPS ground speed is valid uint8_t nsats; // number of satellites used float gdop; // geometric dilution of precision }; typedef matrix::Vector Vector2f; typedef matrix::Vector Vector3f; typedef matrix::Quaternion Quaternion; typedef matrix::Matrix Matrix3f; struct outputSample { Quaternion quat_nominal; // nominal quaternion describing vehicle attitude Vector3f vel; // NED velocity estimate in earth frame in m/s Vector3f pos; // NED position estimate in earth frame in m/s uint64_t time_us; // timestamp in microseconds }; struct imuSample { Vector3f delta_ang; // delta angle in body frame (integrated gyro measurements) Vector3f delta_vel; // delta velocity in body frame (integrated accelerometer measurements) float delta_ang_dt; // delta angle integration period in seconds float delta_vel_dt; // delta velocity integration period in seconds uint64_t time_us; // timestamp in microseconds }; struct gpsSample { Vector2f pos; // NE earth frame gps horizontal position measurement in m float hgt; // gps height measurement in m Vector3f vel; // NED earth frame gps velocity measurement in m/s uint64_t time_us; // timestamp in microseconds }; struct magSample { Vector3f mag; // NED magnetometer body frame measurements uint64_t time_us; // timestamp in microseconds }; struct baroSample { float hgt; // barometer height above sea level measurement in m uint64_t time_us; // timestamp in microseconds }; struct rangeSample { float rng; // range (distance to ground) measurement in m uint64_t time_us; // timestamp in microseconds }; struct airspeedSample { float airspeed; // airspeed measurement in m/s uint64_t time_us; // timestamp in microseconds }; struct flowSample { Vector2f flowRadXY; Vector2f flowRadXYcomp; uint64_t time_us; }; struct parameters { float mag_delay_ms = 0.0f; // magnetometer measurement delay relative to the IMU float baro_delay_ms = 0.0f; // barometer height measurement delay relative to the IMU float gps_delay_ms = 200.0f; // GPS measurement delay relative to the IMU float airspeed_delay_ms = 200.0f; // airspeed measurement delay relative to the IMU // input noise float gyro_noise = 1.0e-3f; // IMU angular rate noise used for covariance prediction float accel_noise = 2.5e-1f; // IMU acceleration noise use for covariance prediction // process noise float gyro_bias_p_noise = 7.0e-5f; // process noise for IMU delta angle bias prediction float accel_bias_p_noise = 1.0e-4f; // process noise for IMU delta velocity bias prediction float gyro_scale_p_noise = 3.0e-3f; // process noise for gyro scale factor prediction float mag_p_noise = 2.5e-2f; // process noise for magnetic field prediction float wind_vel_p_noise = 1.0e-1f; // process noise for wind velocity prediction float gps_vel_noise = 5.0e-1f; // observation noise for gps velocity fusion float gps_pos_noise = 1.0f; // observation noise for gps position fusion float pos_noaid_noise = 10.0f; // observation noise for non-aiding position fusion float baro_noise = 3.0f; // observation noise for barometric height fusion float baro_innov_gate = 3.0f; // barometric height innovation consistency gate size in standard deviations float posNE_innov_gate = 3.0f; // GPS horizontal position innovation consistency gate size in standard deviations float vel_innov_gate = 3.0f; // GPS velocity innovation consistency gate size in standard deviations float mag_heading_noise = 1.7e-1f; // measurement noise used for simple heading fusion float mag_noise = 5.0e-2f; // measurement noise used for 3-axis magnetoemeter fusion float mag_declination_deg = 0.0f; // magnetic declination in degrees float heading_innov_gate = 3.0f; // heading fusion innovation consistency gate size in standard deviations float mag_innov_gate = 3.0f; // magnetometer fusion innovation consistency gate size in standard deviations int mag_declination_source = 7; // bitmask used to control the handling of declination data int mag_fusion_type = 0; // integer used to specify the type of magnetometer fusion used // these parameters control the strictness of GPS quality checks used to determine uf the GPS is // good enough to set a local origin and commence aiding int gps_check_mask = 21; // bitmask used to control which GPS quality checks are used float req_hacc = 5.0f; // maximum acceptable horizontal position error float req_vacc = 8.0f; // maximum acceptable vertical position error float req_sacc = 1.0f; // maximum acceptable speed error int req_nsats = 6; // minimum acceptable satellite count float req_gdop = 2.0f; // maximum acceptable geometric dilution of precision float req_hdrift = 0.3f; // maximum acceptable horizontal drift speed float req_vdrift = 0.5f; // maximum acceptable vertical drift speed }; // Bit locations for mag_declination_source #define MASK_USE_GEO_DECL (1<<0) // set to true to use the declination from the geo library when the GPS position becomes available, set to false to always use the EKF2_MAG_DECL value #define MASK_SAVE_GEO_DECL (1<<1) // set to true to set the EKF2_MAG_DECL parameter to the value returned by the geo library #define MASK_FUSE_DECL (1<<2) // set to true if the declination is always fused as an observation to contrain drift when 3-axis fusion is performed // Integer definitions for mag_fusion_type #define MAG_FUSE_TYPE_AUTO 0 // The selection of either heading or 3D magnetometer fusion will be automatic #define MAG_FUSE_TYPE_HEADING 1 // Magnetic heading fusion will alays be used. This is less accurate, but less affected by earth field distortions #define MAG_FUSE_TYPE_3D 2 // Magnetometer 3-axis fusion will always be used. This is more accurate, but more affected by localised earth field distortions struct stateSample { Vector3f ang_error; // attitude axis angle error (error state formulation) Vector3f vel; // NED velocity in earth frame in m/s Vector3f pos; // NED position in earth frame in m Vector3f gyro_bias; // gyro bias estimate in rad/s Vector3f gyro_scale; // gyro scale estimate float accel_z_bias; // accelerometer z axis bias estimate Vector3f mag_I; // NED earth magnetic field in gauss Vector3f mag_B; // magnetometer bias estimate in body frame in gauss Vector2f wind_vel; // wind velocity in m/s Quaternion quat_nominal; // nominal quaternion describing vehicle attitude }; struct fault_status_t { bool bad_mag_x: 1; // true if the fusion of the magnetometer X-axis has encountered a numerical error bool bad_mag_y: 1; // true if the fusion of the magnetometer Y-axis has encountered a numerical error bool bad_mag_z: 1; // true if the fusion of the magnetometer Z-axis has encountered a numerical error bool bad_mag_hdg: 1; // true if the fusion of the magnetic heading has encountered a numerical error bool bad_mag_decl: 1; // true if the fusion of the magnetic declination has encountered a numerical error bool bad_airspeed: 1; // true if fusion of the airspeed has encountered a numerical error bool bad_sideslip: 1; // true if fusion of the synthetic sideslip constraint has encountered a numerical error bool bad_optflow_X: 1; // true if fusion of the optical flow X axis has encountered a numerical error bool bad_optflow_Y: 1; // true if fusion of the optical flow Y axis has encountered a numerical error }; // publish the status of various GPS quality checks union gps_check_fail_status_u { struct { uint16_t fix : 1; // 0 - true if the fix type is insufficient (no 3D solution) uint16_t nsats : 1; // 1 - true if number of satellites used is insufficient uint16_t gdop : 1; // 2 - true if geometric dilution of precision is insufficient uint16_t hacc : 1; // 3 - true if reported horizontal accuracy is insufficient uint16_t vacc : 1; // 4 - true if reported vertical accuracy is insufficient uint16_t sacc : 1; // 5 - true if reported speed accuracy is insufficient uint16_t hdrift : 1; // 6 - true if horizontal drift is excessive (can only be used when stationary on ground) uint16_t vdrift : 1; // 7 - true if vertical drift is excessive (can only be used when stationary on ground) uint16_t hspeed : 1; // 8 - true if horizontal speed is excessive (can only be used when stationary on ground) uint16_t vspeed : 1; // 9 - true if vertical speed error is excessive } flags; uint16_t value; }; // bitmask containing filter control status union filter_control_status_u { struct { uint8_t angle_align : 1; // 0 - true if the filter angular alignment is complete uint8_t gps : 1; // 1 - true if GPS measurements are being fused uint8_t opt_flow : 1; // 2 - true if optical flow measurements are being fused uint8_t mag_hdg : 1; // 3 - true if a simple magnetic heading is being fused uint8_t mag_3D : 1; // 4 - true if 3-axis magnetometer measurement are being fused uint8_t mag_dec : 1; // 5 - true if synthetic magnetic declination measurements are being fused uint8_t in_air : 1; // 6 - true when the vehicle is airborne uint8_t armed : 1; // 7 - true when the vehicle motors are armed } flags; uint16_t value; }; }