/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ekf_helper.cpp * Definition of ekf helper functions. * * @author Roman Bast * */ #include "ekf.h" #ifdef __PX4_POSIX #include #include #endif #include #include "mathlib.h" // Reset the velocity states. If we have a recent and valid // gps measurement then use for velocity initialisation void Ekf::resetVelocity() { // if we have a valid GPS measurement use it to initialise velocity states gpsSample gps_newest = _gps_buffer.get_newest(); if (_time_last_imu - gps_newest.time_us < 400000) { _state.vel = gps_newest.vel; } else { _state.vel.setZero(); } } // Reset position states. If we have a recent and valid // gps measurement then use for position initialisation void Ekf::resetPosition() { // if we have a fresh GPS measurement, use it to initialise position states and correct the position for the measurement delay gpsSample gps_newest = _gps_buffer.get_newest(); float time_delay = 1e-6f * (float)(_time_last_imu - gps_newest.time_us); if (time_delay < 0.4f) { _state.pos(0) = gps_newest.pos(0) + gps_newest.vel(0) * time_delay; _state.pos(1) = gps_newest.pos(1) + gps_newest.vel(1) * time_delay; } else { // XXX use the value of the last known position } } // Reset height state using the last height measurement void Ekf::resetHeight() { if (_params.vdist_sensor_type == VDIST_SENSOR_RANGE) { rangeSample range_newest = _range_buffer.get_newest(); if (_time_last_imu - range_newest.time_us < 200000) { _state.pos(2) = _hgt_at_alignment - range_newest.rng; } else { // TODO: reset to last known range based estimate } } else { // initialize vertical position with newest baro measurement baroSample baro_newest = _baro_buffer.get_newest(); if (_time_last_imu - baro_newest.time_us < 200000) { _state.pos(2) = _hgt_at_alignment - baro_newest.hgt; } else { // TODO: reset to last known baro based estimate } } } // Reset heading and magnetic field states bool Ekf::resetMagHeading(Vector3f &mag_init) { // If we don't a tilt estimate then we cannot initialise the yaw if (!_control_status.flags.tilt_align) { return false; } // get the roll, pitch, yaw estimates and set the yaw to zero matrix::Quaternion q(_state.quat_nominal(0), _state.quat_nominal(1), _state.quat_nominal(2), _state.quat_nominal(3)); matrix::Euler euler_init(q); euler_init(2) = 0.0f; // rotate the magnetometer measurements into earth axes matrix::Dcm R_to_earth_zeroyaw(euler_init); Vector3f mag_ef_zeroyaw = R_to_earth_zeroyaw * mag_init; euler_init(2) = _mag_declination - atan2f(mag_ef_zeroyaw(1), mag_ef_zeroyaw(0)); // calculate initial quaternion states for the ekf // we don't change the output attitude to avoid jumps _state.quat_nominal = Quaternion(euler_init); // reset the angle error variances because the yaw angle could have changed by a significant amount // by setting them to zero we avoid 'kicks' in angle when 3-D fusion starts and the imu process noise // will grow them again. zeroRows(P, 0, 2); zeroCols(P, 0, 2); // calculate initial earth magnetic field states matrix::Dcm R_to_earth(euler_init); _state.mag_I = R_to_earth * mag_init; // reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance zeroRows(P, 16, 21); zeroCols(P, 16, 21); for (uint8_t index = 16; index <= 21; index ++) { P[index][index] = sq(_params.mag_noise); } return true; } // Calculate the magnetic declination to be used by the alignment and fusion processing void Ekf::calcMagDeclination() { // set source of magnetic declination for internal use if (_params.mag_declination_source & MASK_USE_GEO_DECL) { // use parameter value until GPS is available, then use value returned by geo library if (_NED_origin_initialised) { _mag_declination = _mag_declination_gps; _mag_declination_to_save_deg = math::degrees(_mag_declination); } else { _mag_declination = math::radians(_params.mag_declination_deg); _mag_declination_to_save_deg = _params.mag_declination_deg; } } else { // always use the parameter value _mag_declination = math::radians(_params.mag_declination_deg); _mag_declination_to_save_deg = _params.mag_declination_deg; } } // This function forces the covariance matrix to be symmetric void Ekf::makeSymmetrical() { for (unsigned row = 0; row < _k_num_states; row++) { for (unsigned column = 0; column < row; column++) { float tmp = (P[row][column] + P[column][row]) / 2; P[row][column] = tmp; P[column][row] = tmp; } } } void Ekf::constrainStates() { for (int i = 0; i < 3; i++) { _state.ang_error(i) = math::constrain(_state.ang_error(i), -1.0f, 1.0f); } for (int i = 0; i < 3; i++) { _state.vel(i) = math::constrain(_state.vel(i), -1000.0f, 1000.0f); } for (int i = 0; i < 3; i++) { _state.pos(i) = math::constrain(_state.pos(i), -1.e6f, 1.e6f); } for (int i = 0; i < 3; i++) { _state.gyro_bias(i) = math::constrain(_state.gyro_bias(i), -0.349066f * _dt_imu_avg, 0.349066f * _dt_imu_avg); } for (int i = 0; i < 3; i++) { _state.gyro_scale(i) = math::constrain(_state.gyro_scale(i), 0.95f, 1.05f); } _state.accel_z_bias = math::constrain(_state.accel_z_bias, -1.0f * _dt_imu_avg, 1.0f * _dt_imu_avg); for (int i = 0; i < 3; i++) { _state.mag_I(i) = math::constrain(_state.mag_I(i), -1.0f, 1.0f); } for (int i = 0; i < 3; i++) { _state.mag_B(i) = math::constrain(_state.mag_B(i), -0.5f, 0.5f); } for (int i = 0; i < 2; i++) { _state.wind_vel(i) = math::constrain(_state.wind_vel(i), -100.0f, 100.0f); } } // calculate the earth rotation vector void Ekf::calcEarthRateNED(Vector3f &omega, double lat_rad) const { omega(0) = _k_earth_rate * cosf((float)lat_rad); omega(1) = 0.0f; omega(2) = -_k_earth_rate * sinf((float)lat_rad); } // gets the innovations of velocity and position measurements // 0-2 vel, 3-5 pos void Ekf::get_vel_pos_innov(float vel_pos_innov[6]) { memcpy(vel_pos_innov, _vel_pos_innov, sizeof(float) * 6); } // writes the innovations of the earth magnetic field measurements void Ekf::get_mag_innov(float mag_innov[3]) { memcpy(mag_innov, _mag_innov, 3 * sizeof(float)); } // gets the innovations of the heading measurement void Ekf::get_heading_innov(float *heading_innov) { memcpy(heading_innov, &_heading_innov, sizeof(float)); } // gets the innovation variances of velocity and position measurements // 0-2 vel, 3-5 pos void Ekf::get_vel_pos_innov_var(float vel_pos_innov_var[6]) { memcpy(vel_pos_innov_var, _vel_pos_innov_var, sizeof(float) * 6); } // gets the innovation variances of the earth magnetic field measurements void Ekf::get_mag_innov_var(float mag_innov_var[3]) { memcpy(mag_innov_var, _mag_innov_var, sizeof(float) * 3); } // gets the innovation variance of the heading measurement void Ekf::get_heading_innov_var(float *heading_innov_var) { memcpy(heading_innov_var, &_heading_innov_var, sizeof(float)); } // get the state vector at the delayed time horizon void Ekf::get_state_delayed(float *state) { for (int i = 0; i < 3; i++) { state[i] = _state.ang_error(i); } for (int i = 0; i < 3; i++) { state[i + 3] = _state.vel(i); } for (int i = 0; i < 3; i++) { state[i + 6] = _state.pos(i); } for (int i = 0; i < 3; i++) { state[i + 9] = _state.gyro_bias(i); } for (int i = 0; i < 3; i++) { state[i + 12] = _state.gyro_scale(i); } state[15] = _state.accel_z_bias; for (int i = 0; i < 3; i++) { state[i + 16] = _state.mag_I(i); } for (int i = 0; i < 3; i++) { state[i + 19] = _state.mag_B(i); } for (int i = 0; i < 2; i++) { state[i + 22] = _state.wind_vel(i); } } // get the diagonal elements of the covariance matrix void Ekf::get_covariances(float *covariances) { for (unsigned i = 0; i < _k_num_states; i++) { covariances[i] = P[i][i]; } } // get the position and height of the ekf origin in WGS-84 coordinates and time the origin was set void Ekf::get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) { memcpy(origin_time, &_last_gps_origin_time_us, sizeof(uint64_t)); memcpy(origin_pos, &_pos_ref, sizeof(map_projection_reference_s)); memcpy(origin_alt, &_gps_alt_ref, sizeof(float)); } // get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position void Ekf::get_ekf_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning) { // report absolute accuracy taking into account the uncertainty in location of the origin // TODO we a need a way to allow for baro drift error float temp1 = sqrtf(P[6][6] + P[7][7] + sq(_gps_origin_eph)); float temp2 = sqrtf(P[8][8] + sq(_gps_origin_epv)); memcpy(ekf_eph, &temp1, sizeof(float)); memcpy(ekf_epv, &temp2, sizeof(float)); // report dead reckoning if it is more than a second since we fused in GPS bool temp3 = (_time_last_imu - _time_last_pos_fuse > 1e6); memcpy(dead_reckoning, &temp3, sizeof(bool)); } // fuse measurement void Ekf::fuse(float *K, float innovation) { for (unsigned i = 0; i < 3; i++) { _state.ang_error(i) = _state.ang_error(i) - K[i] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.vel(i) = _state.vel(i) - K[i + 3] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.pos(i) = _state.pos(i) - K[i + 6] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.gyro_bias(i) = _state.gyro_bias(i) - K[i + 9] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.gyro_scale(i) = _state.gyro_scale(i) - K[i + 12] * innovation; } _state.accel_z_bias -= K[15] * innovation; for (unsigned i = 0; i < 3; i++) { _state.mag_I(i) = _state.mag_I(i) - K[i + 16] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.mag_B(i) = _state.mag_B(i) - K[i + 19] * innovation; } for (unsigned i = 0; i < 2; i++) { _state.wind_vel(i) = _state.wind_vel(i) - K[i + 22] * innovation; } } // zero specified range of rows in the state covariance matrix void Ekf::zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { uint8_t row; for (row = first; row <= last; row++) { memset(&cov_mat[row][0], 0, sizeof(cov_mat[0][0]) * 24); } } // zero specified range of columns in the state covariance matrix void Ekf::zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { uint8_t row; for (row = 0; row <= 23; row++) { memset(&cov_mat[row][first], 0, sizeof(cov_mat[0][0]) * (1 + last - first)); } } bool Ekf::global_position_is_valid() { // return true if the position estimate is valid // TODO implement proper check based on published GPS accuracy, innovation consistency checks and timeout status return (_NED_origin_initialised && ((_time_last_imu - _time_last_gps) < 5e6) && _control_status.flags.gps); }