/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file vel_pos_fusion.cpp * Function for fusing gps and baro measurements/ * equations generated using EKF/python/ekf_derivation/main.py * * @author Paul Riseborough * @author Siddharth Bharat Purohit * */ #include "ekf.h" #include #include #include #include "utils.hpp" void Ekf::fuseOptFlow() { float gndclearance = fmaxf(_params.rng_gnd_clearance, 0.1f); // get latest estimated orientation const float q0 = _state.quat_nominal(0); const float q1 = _state.quat_nominal(1); const float q2 = _state.quat_nominal(2); const float q3 = _state.quat_nominal(3); // get latest velocity in earth frame const float vn = _state.vel(0); const float ve = _state.vel(1); const float vd = _state.vel(2); // calculate the optical flow observation variance const float R_LOS = calcOptFlowMeasVar(); // get rotation matrix from earth to body const Dcmf earth_to_body = quatToInverseRotMat(_state.quat_nominal); // calculate the sensor position relative to the IMU const Vector3f pos_offset_body = _params.flow_pos_body - _params.imu_pos_body; // calculate the velocity of the sensor relative to the imu in body frame // Note: _flow_sample_delayed.gyro_xyz is the negative of the body angular velocity, thus use minus sign const Vector3f vel_rel_imu_body = Vector3f(-_flow_sample_delayed.gyro_xyz / _flow_sample_delayed.dt) % pos_offset_body; // calculate the velocity of the sensor in the earth frame const Vector3f vel_rel_earth = _state.vel + _R_to_earth * vel_rel_imu_body; // rotate into body frame const Vector3f vel_body = earth_to_body * vel_rel_earth; // height above ground of the IMU float heightAboveGndEst = _terrain_vpos - _state.pos(2); // calculate the sensor position relative to the IMU in earth frame const Vector3f pos_offset_earth = _R_to_earth * pos_offset_body; // calculate the height above the ground of the optical flow camera. Since earth frame is NED // a positive offset in earth frame leads to a smaller height above the ground. heightAboveGndEst -= pos_offset_earth(2); // constrain minimum height above ground heightAboveGndEst = math::max(heightAboveGndEst, gndclearance); // calculate range from focal point to centre of image const float range = heightAboveGndEst / earth_to_body(2, 2); // absolute distance to the frame region in view // calculate optical LOS rates using optical flow rates that have had the body angular rate contribution removed // correct for gyro bias errors in the data used to do the motion compensation // Note the sign convention used: A positive LOS rate is a RH rotation of the scene about that axis. const Vector2f opt_flow_rate = _flow_compensated_XY_rad / _flow_sample_delayed.dt + Vector2f(_flow_gyro_bias); // compute the velocities in body and local frames from corrected optical flow measurement // for logging only _flow_vel_body(0) = -opt_flow_rate(1) * range; _flow_vel_body(1) = opt_flow_rate(0) * range; _flow_vel_ne = Vector2f(_R_to_earth * Vector3f(_flow_vel_body(0), _flow_vel_body(1), 0.f)); _flow_innov(0) = vel_body(1) / range - opt_flow_rate(0); // flow around the X axis _flow_innov(1) = -vel_body(0) / range - opt_flow_rate(1); // flow around the Y axis // The derivation allows for an arbitrary body to flow sensor frame rotation which is // currently not supported by the EKF, so assume sensor frame is aligned with the // body frame const Dcmf Tbs = matrix::eye(); // Sub Expressions const float HK0 = -Tbs(1,0)*q2 + Tbs(1,1)*q1 + Tbs(1,2)*q0; const float HK1 = Tbs(1,0)*q3 + Tbs(1,1)*q0 - Tbs(1,2)*q1; const float HK2 = Tbs(1,0)*q0 - Tbs(1,1)*q3 + Tbs(1,2)*q2; const float HK3 = HK0*vd + HK1*ve + HK2*vn; const float HK4 = 1.0F/range; const float HK5 = 2*HK4; const float HK6 = Tbs(1,0)*q1 + Tbs(1,1)*q2 + Tbs(1,2)*q3; const float HK7 = -HK0*ve + HK1*vd + HK6*vn; const float HK8 = HK0*vn - HK2*vd + HK6*ve; const float HK9 = -HK1*vn + HK2*ve + HK6*vd; const float HK10 = q0*q2; const float HK11 = q1*q3; const float HK12 = HK10 + HK11; const float HK13 = 2*Tbs(1,2); const float HK14 = q0*q3; const float HK15 = q1*q2; const float HK16 = HK14 - HK15; const float HK17 = 2*Tbs(1,1); const float HK18 = ecl::powf(q1, 2); const float HK19 = ecl::powf(q2, 2); const float HK20 = -HK19; const float HK21 = ecl::powf(q0, 2); const float HK22 = ecl::powf(q3, 2); const float HK23 = HK21 - HK22; const float HK24 = HK18 + HK20 + HK23; const float HK25 = HK12*HK13 - HK16*HK17 + HK24*Tbs(1,0); const float HK26 = HK14 + HK15; const float HK27 = 2*Tbs(1,0); const float HK28 = q0*q1; const float HK29 = q2*q3; const float HK30 = HK28 - HK29; const float HK31 = -HK18; const float HK32 = HK19 + HK23 + HK31; const float HK33 = -HK13*HK30 + HK26*HK27 + HK32*Tbs(1,1); const float HK34 = HK28 + HK29; const float HK35 = HK10 - HK11; const float HK36 = HK20 + HK21 + HK22 + HK31; const float HK37 = HK17*HK34 - HK27*HK35 + HK36*Tbs(1,2); const float HK38 = 2*HK3; const float HK39 = 2*HK7; const float HK40 = 2*HK8; const float HK41 = 2*HK9; const float HK42 = HK25*P(0,4) + HK33*P(0,5) + HK37*P(0,6) + HK38*P(0,0) + HK39*P(0,1) + HK40*P(0,2) + HK41*P(0,3); const float HK43 = ecl::powf(range, -2); const float HK44 = HK25*P(4,6) + HK33*P(5,6) + HK37*P(6,6) + HK38*P(0,6) + HK39*P(1,6) + HK40*P(2,6) + HK41*P(3,6); const float HK45 = HK25*P(4,5) + HK33*P(5,5) + HK37*P(5,6) + HK38*P(0,5) + HK39*P(1,5) + HK40*P(2,5) + HK41*P(3,5); const float HK46 = HK25*P(4,4) + HK33*P(4,5) + HK37*P(4,6) + HK38*P(0,4) + HK39*P(1,4) + HK40*P(2,4) + HK41*P(3,4); const float HK47 = HK25*P(2,4) + HK33*P(2,5) + HK37*P(2,6) + HK38*P(0,2) + HK39*P(1,2) + HK40*P(2,2) + HK41*P(2,3); const float HK48 = HK25*P(3,4) + HK33*P(3,5) + HK37*P(3,6) + HK38*P(0,3) + HK39*P(1,3) + HK40*P(2,3) + HK41*P(3,3); const float HK49 = HK25*P(1,4) + HK33*P(1,5) + HK37*P(1,6) + HK38*P(0,1) + HK39*P(1,1) + HK40*P(1,2) + HK41*P(1,3); // const float HK50 = HK4/(HK25*HK43*HK46 + HK33*HK43*HK45 + HK37*HK43*HK44 + HK38*HK42*HK43 + HK39*HK43*HK49 + HK40*HK43*HK47 + HK41*HK43*HK48 + R_LOS); // calculate innovation variance for X axis observation and protect against a badly conditioned calculation _flow_innov_var(0) = (HK25*HK43*HK46 + HK33*HK43*HK45 + HK37*HK43*HK44 + HK38*HK42*HK43 + HK39*HK43*HK49 + HK40*HK43*HK47 + HK41*HK43*HK48 + R_LOS); if (_flow_innov_var(0) < R_LOS) { // we need to reinitialise the covariance matrix and abort this fusion step initialiseCovariance(); return; } const float HK50 = HK4/_flow_innov_var(0); const float HK51 = Tbs(0,1)*q1; const float HK52 = Tbs(0,2)*q0; const float HK53 = Tbs(0,0)*q2; const float HK54 = HK51 + HK52 - HK53; const float HK55 = Tbs(0,0)*q3; const float HK56 = Tbs(0,1)*q0; const float HK57 = Tbs(0,2)*q1; const float HK58 = HK55 + HK56 - HK57; const float HK59 = Tbs(0,0)*q0; const float HK60 = Tbs(0,2)*q2; const float HK61 = Tbs(0,1)*q3; const float HK62 = HK59 + HK60 - HK61; const float HK63 = HK54*vd + HK58*ve + HK62*vn; const float HK64 = Tbs(0,0)*q1 + Tbs(0,1)*q2 + Tbs(0,2)*q3; const float HK65 = HK58*vd + HK64*vn; const float HK66 = -HK54*ve + HK65; const float HK67 = HK54*vn + HK64*ve; const float HK68 = -HK62*vd + HK67; const float HK69 = HK62*ve + HK64*vd; const float HK70 = -HK58*vn + HK69; const float HK71 = 2*Tbs(0,1); const float HK72 = 2*Tbs(0,2); const float HK73 = HK12*HK72 + HK24*Tbs(0,0); const float HK74 = -HK16*HK71 + HK73; const float HK75 = 2*Tbs(0,0); const float HK76 = HK26*HK75 + HK32*Tbs(0,1); const float HK77 = -HK30*HK72 + HK76; const float HK78 = HK34*HK71 + HK36*Tbs(0,2); const float HK79 = -HK35*HK75 + HK78; const float HK80 = 2*HK63; const float HK81 = 2*HK65 + 2*ve*(-HK51 - HK52 + HK53); const float HK82 = 2*HK67 + 2*vd*(-HK59 - HK60 + HK61); const float HK83 = 2*HK69 + 2*vn*(-HK55 - HK56 + HK57); const float HK84 = HK71*(-HK14 + HK15) + HK73; const float HK85 = HK72*(-HK28 + HK29) + HK76; const float HK86 = HK75*(-HK10 + HK11) + HK78; const float HK87 = HK80*P(0,0) + HK81*P(0,1) + HK82*P(0,2) + HK83*P(0,3) + HK84*P(0,4) + HK85*P(0,5) + HK86*P(0,6); const float HK88 = HK80*P(0,6) + HK81*P(1,6) + HK82*P(2,6) + HK83*P(3,6) + HK84*P(4,6) + HK85*P(5,6) + HK86*P(6,6); const float HK89 = HK80*P(0,5) + HK81*P(1,5) + HK82*P(2,5) + HK83*P(3,5) + HK84*P(4,5) + HK85*P(5,5) + HK86*P(5,6); const float HK90 = HK80*P(0,4) + HK81*P(1,4) + HK82*P(2,4) + HK83*P(3,4) + HK84*P(4,4) + HK85*P(4,5) + HK86*P(4,6); const float HK91 = HK80*P(0,2) + HK81*P(1,2) + HK82*P(2,2) + HK83*P(2,3) + HK84*P(2,4) + HK85*P(2,5) + HK86*P(2,6); const float HK92 = 2*HK43; const float HK93 = HK80*P(0,3) + HK81*P(1,3) + HK82*P(2,3) + HK83*P(3,3) + HK84*P(3,4) + HK85*P(3,5) + HK86*P(3,6); const float HK94 = HK80*P(0,1) + HK81*P(1,1) + HK82*P(1,2) + HK83*P(1,3) + HK84*P(1,4) + HK85*P(1,5) + HK86*P(1,6); // const float HK95 = HK4/(HK43*HK74*HK90 + HK43*HK77*HK89 + HK43*HK79*HK88 + HK43*HK80*HK87 + HK66*HK92*HK94 + HK68*HK91*HK92 + HK70*HK92*HK93 + R_LOS); // calculate innovation variance for Y axis observation and protect against a badly conditioned calculation _flow_innov_var(1) = (HK43*HK74*HK90 + HK43*HK77*HK89 + HK43*HK79*HK88 + HK43*HK80*HK87 + HK66*HK92*HK94 + HK68*HK91*HK92 + HK70*HK92*HK93 + R_LOS); if (_flow_innov_var(1) < R_LOS) { // we need to reinitialise the covariance matrix and abort this fusion step initialiseCovariance(); return; } const float HK95 = HK4/_flow_innov_var(1); // run the innovation consistency check and record result bool flow_fail = false; float test_ratio[2]; test_ratio[0] = sq(_flow_innov(0)) / (sq(math::max(_params.flow_innov_gate, 1.0f)) * _flow_innov_var(0)); test_ratio[1] = sq(_flow_innov(1)) / (sq(math::max(_params.flow_innov_gate, 1.0f)) * _flow_innov_var(1)); _optflow_test_ratio = math::max(test_ratio[0],test_ratio[1]); for (uint8_t obs_index = 0; obs_index <= 1; obs_index++) { if (test_ratio[obs_index] > 1.0f) { flow_fail = true; _innov_check_fail_status.value |= (1 << (obs_index + 10)); } else { _innov_check_fail_status.value &= ~(1 << (obs_index + 10)); } } // if either axis fails we abort the fusion if (flow_fail) { return; } // fuse observation axes sequentially SparseVector24f<0,1,2,3,4,5,6> Hfusion; // Optical flow observation Jacobians Vector24f Kfusion; // Optical flow Kalman gains for (uint8_t obs_index = 0; obs_index <= 1; obs_index++) { // calculate observation Jocobians and Kalman gains if (obs_index == 0) { // Observation Jacobians - axis 0 Hfusion.at<0>() = HK3*HK5; Hfusion.at<1>() = HK5*HK7; Hfusion.at<2>() = HK5*HK8; Hfusion.at<3>() = HK5*HK9; Hfusion.at<4>() = HK25*HK4; Hfusion.at<5>() = HK33*HK4; Hfusion.at<6>() = HK37*HK4; // Kalman gains - axis 0 Kfusion(0) = HK42*HK50; Kfusion(1) = HK49*HK50; Kfusion(2) = HK47*HK50; Kfusion(3) = HK48*HK50; Kfusion(4) = HK46*HK50; Kfusion(5) = HK45*HK50; Kfusion(6) = HK44*HK50; for (unsigned row = 7; row <= 23; row++) { Kfusion(row) = HK50*(HK25*P(4,row) + HK33*P(5,row) + HK37*P(6,row) + HK38*P(0,row) + HK39*P(1,row) + HK40*P(2,row) + HK41*P(3,row)); } } else { // Observation Jacobians - axis 1 Hfusion.at<0>() = -HK5*HK63; Hfusion.at<1>() = -HK5*HK66; Hfusion.at<2>() = -HK5*HK68; Hfusion.at<3>() = -HK5*HK70; Hfusion.at<4>() = -HK4*HK74; Hfusion.at<5>() = -HK4*HK77; Hfusion.at<6>() = -HK4*HK79; // Kalman gains - axis 1 Kfusion(0) = -HK87*HK95; Kfusion(1) = -HK94*HK95; Kfusion(2) = -HK91*HK95; Kfusion(3) = -HK93*HK95; Kfusion(4) = -HK90*HK95; Kfusion(5) = -HK89*HK95; Kfusion(6) = -HK88*HK95; for (unsigned row = 7; row <= 23; row++) { Kfusion(row) = -HK95*(HK80*P(0,row) + HK81*P(1,row) + HK82*P(2,row) + HK83*P(3,row) + HK84*P(4,row) + HK85*P(5,row) + HK86*P(6,row)); } } const bool is_fused = measurementUpdate(Kfusion, Hfusion, _flow_innov(obs_index)); if (obs_index == 0) { _fault_status.flags.bad_optflow_X = !is_fused; } else if (obs_index == 1) { _fault_status.flags.bad_optflow_Y = !is_fused; } if (is_fused) { _time_last_of_fuse = _time_last_imu; } } } // calculate optical flow body angular rate compensation // returns false if bias corrected body rate data is unavailable bool Ekf::calcOptFlowBodyRateComp() { // reset the accumulators if the time interval is too large if (_delta_time_of > 1.0f) { _imu_del_ang_of.setZero(); _delta_time_of = 0.0f; return false; } const bool use_flow_sensor_gyro = ISFINITE(_flow_sample_delayed.gyro_xyz(0)) && ISFINITE(_flow_sample_delayed.gyro_xyz(1)) && ISFINITE(_flow_sample_delayed.gyro_xyz(2)); if (use_flow_sensor_gyro) { // if accumulation time differences are not excessive and accumulation time is adequate // compare the optical flow and and navigation rate data and calculate a bias error if ((_delta_time_of > FLT_EPSILON) && (_flow_sample_delayed.dt > FLT_EPSILON) && (fabsf(_delta_time_of - _flow_sample_delayed.dt) < 0.1f)) { const Vector3f reference_body_rate(_imu_del_ang_of * (1.0f / _delta_time_of)); const Vector3f measured_body_rate(_flow_sample_delayed.gyro_xyz * (1.0f / _flow_sample_delayed.dt)); // calculate the bias estimate using a combined LPF and spike filter _flow_gyro_bias = _flow_gyro_bias * 0.99f + matrix::constrain(measured_body_rate - reference_body_rate, -0.1f, 0.1f) * 0.01f; } } else { // Use the EKF gyro data if optical flow sensor gyro data is not available // for clarification of the sign see definition of flowSample and imuSample in common.h _flow_sample_delayed.gyro_xyz = -_imu_del_ang_of; _flow_gyro_bias.zero(); } // reset the accumulators _imu_del_ang_of.setZero(); _delta_time_of = 0.0f; return true; } // calculate the measurement variance for the optical flow sensor (rad/sec)^2 float Ekf::calcOptFlowMeasVar() { // calculate the observation noise variance - scaling noise linearly across flow quality range const float R_LOS_best = fmaxf(_params.flow_noise, 0.05f); const float R_LOS_worst = fmaxf(_params.flow_noise_qual_min, 0.05f); // calculate a weighting that varies between 1 when flow quality is best and 0 when flow quality is worst float weighting = (255.0f - (float)_params.flow_qual_min); if (weighting >= 1.0f) { weighting = math::constrain(((float)_flow_sample_delayed.quality - (float)_params.flow_qual_min) / weighting, 0.0f, 1.0f); } else { weighting = 0.0f; } // take the weighted average of the observation noise for the best and wort flow quality const float R_LOS = sq(R_LOS_best * weighting + R_LOS_worst * (1.0f - weighting)); return R_LOS; }