/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ekf.cpp * Core functions for ekf attitude and position estimator. * * @author Roman Bast * */ #include "ekf.h" #include Ekf::Ekf(): _filter_initialised(false), _earth_rate_initialised(false), _fuse_height(false), _fuse_pos(false), _fuse_vel(false), _mag_fuse_index(0), _time_last_fake_gps(0) { _earth_rate_NED.setZero(); _R_prev = matrix::Dcm(); _delta_angle_corr.setZero(); _delta_vel_corr.setZero(); _vel_corr.setZero(); } Ekf::~Ekf() { } bool Ekf::update() { bool ret = false; // indicates if there has been an update if (!_filter_initialised) { _filter_initialised = initialiseFilter(); if (!_filter_initialised) { return false; } } //printStates(); //printStatesFast(); // prediction if (_imu_updated) { ret = true; predictState(); predictCovariance(); } // measurement updates if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) { fuseHeading(); //fuseMag(_mag_fuse_index); //_mag_fuse_index = (_mag_fuse_index + 1) % 3; } if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) { _fuse_height = true; } if (_gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed)) { _fuse_pos = true; _fuse_vel = true; } else if (_time_last_imu - _time_last_gps > 2000000 && _time_last_imu - _time_last_fake_gps > 70000) { _fuse_vel = true; _gps_sample_delayed.vel.setZero(); } if (_fuse_height || _fuse_pos || _fuse_vel) { fuseVelPosHeight(); _fuse_vel = _fuse_pos = _fuse_height = false; } if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)) { fuseRange(); } if (_airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed)) { fuseAirspeed(); } calculateOutputStates(); return ret; } bool Ekf::initialiseFilter(void) { _state.ang_error.setZero(); _state.vel.setZero(); _state.pos.setZero(); _state.gyro_bias.setZero(); _state.gyro_scale(0) = _state.gyro_scale(1) = _state.gyro_scale(2) = 1.0f; _state.accel_z_bias = 0.0f; _state.mag_I.setZero(); _state.mag_B.setZero(); _state.wind_vel.setZero(); // get initial attitude estimate from accel vector, assuming vehicle is static Vector3f accel_init = _imu_down_sampled.delta_vel / _imu_down_sampled.delta_vel_dt; float pitch = 0.0f; float roll = 0.0f; if (accel_init.norm() > 0.001f) { accel_init.normalize(); pitch = asinf(accel_init(0)); roll = -asinf(accel_init(1) / cosf(pitch)); } magSample mag_init = _mag_buffer.get_newest(); if (mag_init.time_us == 0) { return false; } float yaw_init = atan2f(mag_init.mag(1), mag_init.mag(0)); matrix::Euler euler_init(roll, pitch, yaw_init); _state.quat_nominal = Quaternion(euler_init); matrix::Dcm R_to_earth(euler_init); _state.mag_I = R_to_earth * mag_init.mag; resetVelocity(); resetPosition(); initialiseCovariance(); return true; } void Ekf::predictState() { if (!_earth_rate_initialised) { if (_gps_initialised) { calcEarthRateNED(_earth_rate_NED, _posRef.lat_rad ); _earth_rate_initialised = true; } } // attitude error state prediciton matrix::Dcm R_to_earth(_state.quat_nominal); // transformation matrix from body to world frame Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _R_prev * _earth_rate_NED * _imu_sample_delayed.delta_ang_dt; Quaternion dq; // delta quaternion since last update dq.from_axis_angle(corrected_delta_ang); _state.quat_nominal = dq * _state.quat_nominal; _state.quat_nominal.normalize(); _R_prev = R_to_earth.transpose(); Vector3f vel_last = _state.vel; // predict velocity states _state.vel += R_to_earth * _imu_sample_delayed.delta_vel; _state.vel(2) += 9.81f * _imu_sample_delayed.delta_vel_dt; // predict position states via trapezoidal integration of velocity _state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f; constrainStates(); } void Ekf::calculateOutputStates() { imuSample imu_new = _imu_sample_new; Vector3f delta_angle; delta_angle(0) = imu_new.delta_ang(0) * _state.gyro_scale(0); delta_angle(1) = imu_new.delta_ang(1) * _state.gyro_scale(1); delta_angle(2) = imu_new.delta_ang(2) * _state.gyro_scale(2); delta_angle -= _state.gyro_bias; Vector3f delta_vel = imu_new.delta_vel; delta_vel(2) -= _state.accel_z_bias; delta_angle += _delta_angle_corr; Quaternion dq; dq.from_axis_angle(delta_angle); _output_new.time_us = imu_new.time_us; _output_new.quat_nominal = dq * _output_new.quat_nominal; _output_new.quat_nominal.normalize(); matrix::Dcm R_to_earth(_output_new.quat_nominal); Vector3f delta_vel_NED = R_to_earth * delta_vel + _delta_vel_corr; delta_vel_NED(2) += 9.81f * imu_new.delta_vel_dt; Vector3f vel_last = _output_new.vel; _output_new.vel += delta_vel_NED; _output_new.pos += (_output_new.vel + vel_last) * (imu_new.delta_vel_dt * 0.5f) + _vel_corr * imu_new.delta_vel_dt; if (_imu_updated) { _output_buffer.push(_output_new); _imu_updated = false; } if (!_output_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_output_sample_delayed)) { return; } Quaternion quat_inv = _state.quat_nominal.inversed(); Quaternion q_error = _output_sample_delayed.quat_nominal * quat_inv; q_error.normalize(); Vector3f delta_ang_error; float scalar; if (q_error(0) >= 0.0f) { scalar = -2.0f; } else { scalar = 2.0f; } delta_ang_error(0) = scalar * q_error(1); delta_ang_error(1) = scalar * q_error(2); delta_ang_error(2) = scalar * q_error(3); _delta_angle_corr = delta_ang_error * imu_new.delta_ang_dt; _delta_vel_corr = (_state.vel - _output_sample_delayed.vel) * imu_new.delta_vel_dt; _vel_corr = (_state.pos - _output_sample_delayed.pos); } void Ekf::fuseAirspeed() { } void Ekf::fuseRange() { } void Ekf::printStates() { static int counter = 0; if (counter % 50 == 0) { printf("quaternion\n"); for(int i = 0; i < 4; i++) { printf("quat %i %.5f\n", i, (double)_state.quat_nominal(i)); } matrix::Euler euler(_state.quat_nominal); printf("yaw pitch roll %.5f %.5f %.5f\n", (double)euler(2), (double)euler(1), (double)euler(0)); printf("vel\n"); for(int i = 0; i < 3; i++) { printf("v %i %.5f\n", i, (double)_state.vel(i)); } printf("pos\n"); for(int i = 0; i < 3; i++) { printf("p %i %.5f\n", i, (double)_state.pos(i)); } printf("gyro_scale\n"); for(int i = 0; i < 3; i++) { printf("gs %i %.5f\n", i, (double)_state.gyro_scale(i)); } printf("mag earth\n"); for(int i = 0; i < 3; i++) { printf("mI %i %.5f\n", i, (double)_state.mag_I(i)); } printf("mag bias\n"); for(int i = 0; i < 3; i++) { printf("mB %i %.5f\n", i, (double)_state.mag_B(i)); } counter = 0; } counter++; } void Ekf::printStatesFast() { static int counter_fast = 0; if (counter_fast % 50 == 0) { printf("quaternion\n"); for(int i = 0; i < 4; i++) { printf("quat %i %.5f\n", i, (double)_output_new.quat_nominal(i)); } printf("vel\n"); for(int i = 0; i < 3; i++) { printf("v %i %.5f\n", i, (double)_output_new.vel(i)); } printf("pos\n"); for(int i = 0; i < 3; i++) { printf("p %i %.5f\n", i, (double)_output_new.pos(i)); } counter_fast = 0; } counter_fast++; }